# Wydawnictwa / Czasopisma IMPAN / Acta Arithmetica / Wszystkie zeszyty

## Acta Arithmetica

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1

### Tom 172 / 2016

Acta Arithmetica 172 (2016), 271-284 MSC: 11C08, 41A17, 26C10, 30C15. DOI: 10.4064/aa8129-11-2015 Opublikowany online: 4 February 2016

#### Streszczenie

For $n \in {\mathbb N}$, $L \gt 0$, and $p \geq 1$ let $\kappa_p(n,L)$ be the largest possible value of $k$ for which there is a polynomial $P \not \equiv 0$ of the form $$P(x) = \sum_{j=0}^n{a_jx^j}, \quad |a_0| \geq L \Bigl( \sum_{j=1}^n{|a_j|^p} \Bigr)^{1/p}, \ \quad a_j \in {\mathbb C},$$ such that $(x-1)^k$ divides $P(x)$. For $n \in {\mathbb N}$, $L \gt 0$, and $q \geq 1$ let $\mu_q(n,L)$ be the smallest value of $k$ for which there is a polynomial $Q$ of degree $k$ with complex coefficients such that $$|Q(0)| \gt \frac 1L \Bigl( \sum_{j=1}^n{|Q(j)|^q} \Bigr)^{1/q}.$$ We find the size of $\kappa_p(n,L)$ and $\mu_q(n,L)$ for all $n \in {\mathbb N}$, $L \gt 0$, and ${1 \leq p,q \leq \infty}$. The result about $\mu_\infty(n,L)$ is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even in that special case.

#### Autorzy

• Tamás ErdélyiDepartment of Mathematics
Texas A&M University
College Station, TX 77843, U.S.A.
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek