Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Badly approximable points in twisted Diophantine approximation and Hausdorff dimension

Tom 177 / 2017

Paloma Bengoechea, Nikolay Moshchevitin Acta Arithmetica 177 (2017), 301-314 MSC: 11K60, 11J83, 11J20. DOI: 10.4064/aa8234-11-2016 Opublikowany online: 22 February 2017

Streszczenie

For any $j_1,\ldots,j_n \gt 0$ with $\sum_{i=1}^nj_i=1$ and any $\theta\in\mathbb R^n$, let ${\mathrm{Bad}_{\theta}(j_1,\ldots,j_n)}$ denote the set of points $\eta\in\mathbb R^n$ for which $\max_{1\leq i\leq n}(\|q\theta_i-\eta_i\|^{1/j_i}) \gt c/q$ for some positive constant $c=c(\eta)$ and all $q\in\mathbb N$. These sets are the ‘twisted’ inhomogeneous analogue of $\mathrm{Bad}(j_1,\ldots,j_n)$ in the theory of simultaneous Diophantine approximation. It has been shown that they have full Hausdorff dimension in the non-weighted setting, i.e. provided that $j_i=1/n$, and in the weighted setting when $\theta$ is chosen from $\mathrm{Bad}(j_1,\ldots,j_n)$. We generalise these results by proving the full Hausdorff dimension in the weighted setting without any condition on $\theta$. Moreover, we prove $\dim(\mathrm{Bad}_{\theta}(j_1,\ldots,j_n)\cap\mathrm{Bad}(1,0,\ldots,0)\cap\cdots\cap\mathrm{Bad}(0,\ldots,0,1))=n$.

Autorzy

  • Paloma BengoecheaDepartment of Mathematics
    ETH Zürich
    Ramistrasse 101
    8092 Zürich, Switzerland
    e-mail
  • Nikolay MoshchevitinFaculty of Mathematics and Mechanics
    Moscow State University
    Leninskie Gory 1
    GZ MGU, 119991 Moscow, Russia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek