Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On decompositions of quadrinomials and related Diophantine equations

Tom 179 / 2017

Maciej Gawron Acta Arithmetica 179 (2017), 1-15 MSC: Primary 11D41; Secondary 12E05. DOI: 10.4064/aa8411-9-2016 Opublikowany online: 26 April 2017

Streszczenie

Let $A,B,C,D$ be non-zero rational numbers, and let $n_1,n_2,n_3$ be distinct positive integers. We solve the equation \begin{equation*} Ax^{n_1}+Bx^{n_2}+Cx^{n_3}+D = f(g(x)) \end{equation*} in $f,g \in \mathbb{Q}[x]$. Then we use the Bilu–Tichy method to prove that the equation \begin{equation*} Ax^{n_1}+Bx^{n_2}+Cx^{n_3}+D = Ey^{m_1}+Fy^{m_2}+Gy^{m_3}+H \end{equation*} has finitely many integral solutions where $A,B,C,D,E,F,G,H$ are non-zero rational numbers and $(n_1,n_2,n_3)$, $(m_1,m_2,m_3)$ are different triples of distinct positive integers such that $\gcd(n_1,n_2,n_3) = \gcd(m_1,m_2,m_3)=1$ and $n_1,m_1 \geq 9$. We establish the same result for the equation \begin{equation*} A_1x^{n_1}+A_2x^{n_2}+\cdots+A_l x^{n_l} + A_{l+1} = Ey^{m_1}+Fy^{m_2}+Gy^{m_3}, \end{equation*} where $l \geq 4$ is a fixed integer, $A_1,\ldots,A_{l+1},E,F,G$ are rational numbers, non-zero except possibly for $A_{l+1}$, and $n_1,\ldots,n_l$ and $m_1,m_2,m_3$ are sequences of distinct positive integers such that $\gcd(n_1, \ldots n_l) = \gcd(m_1,m_2,m_3)=1$ and $n_1 \gt 2l$, $m_1 \geq 2l(l-1)$.

Autorzy

  • Maciej GawronInstitute of Mathematics
    Jagiellonian University
    Łojasiewicza 6
    30-348 Kraków, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek