Subadditive functions and partial converses of Minkowski's and Mulholland's inequalities

Tom 143 / 1993

Janusz Matkowski, Tadeusz Świa̧tkowski Fundamenta Mathematicae 143 (1993), 75-85 DOI: 10.4064/fm_1993_143_1_1_75_85

Streszczenie

Let ϕ be an arbitrary bijection of $ℝ_+$. We prove that if the two-place function $ϕ^{-1}[ϕ (s)+ϕ (t)]$ is subadditive in $ℝ^2_+$ then $ϕ $ must be a convex homeomorphism of $ℝ_+$. This is a partial converse of Mulholland's inequality. Some new properties of subadditive bijections of $ℝ_+$ are also given. We apply the above results to obtain several converses of Minkowski's inequality.

Autorzy

  • Janusz MatkowskiDepartment of Mathematics
    Technical University
    Willowa 2
    43-309 Bielsko-Biała, Poland
  • Tadeusz Świa̧tkowskiInstitute Of Mathematics
    Technical University
    Al. Politechniki 11
    90-924 Łódź, Poland

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek