Large families of dense pseudocompact subgroups of compact groups

Tom 147 / 1995

Gerald Itzkowitz, Dmitri Shakhmatov Fundamenta Mathematicae 147 (1995), 197-212 DOI: 10.4064/fm_1995_147_3_1_197_212

Streszczenie

We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'={0} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection H H' of different members of H is nowhere dense in G. Some results in the non-Abelian case are also given.

Autorzy

  • Gerald Itzkowitz
  • Dmitri Shakhmatov

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek