Gaussian automorphisms whose ergodic self-joinings are Gaussian

Tom 164 / 2000

M. Lemańczyk, F. Parreau, J.-P. Thouvenot Fundamenta Mathematicae 164 (2000), 253-293 DOI: 10.4064/fm_2000_164_3_1_253_293

Streszczenie

 We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class.  We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This and an elaborate study of isomorphisms between classical factors of Gaussian automorphisms allow us to give a complete solution of the disjointness problem between a Gaussian automorphism whose ergodic self-joinings remain Gaussian and an arbitrary Gaussian automorphism.

Autorzy

  • M. Lemańczyk
  • F. Parreau
  • J.-P. Thouvenot

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek