Rainbow Ramsey theorems for colorings establishing negative partition relations

Tom 198 / 2008

András Hajnal Fundamenta Mathematicae 198 (2008), 255-262 MSC: Primary 03E05. DOI: 10.4064/fm198-3-4

Streszczenie

Given a function $f$, a subset of its domain is a rainbow subset for $f$ if $f$ is one-to-one on it. We start with an old Erdős problem: Assume $f$ is a coloring of the pairs of $\omega _1$ with three colors such that every subset $ A $ of $\omega _1$ of size $\omega _1$ contains a pair of each color. Does there exist a rainbow triangle? We investigate rainbow problems and results of this style for colorings of pairs establishing negative “square bracket” relations.

Autorzy

  • András HajnalRényi Institute
    Reáltanoda u. 13–15
    1053 Budapest, Hungary
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek