Rudin's Dowker space in the extension with a Suslin tree

Tom 201 / 2008

Teruyuki Yorioka Fundamenta Mathematicae 201 (2008), 53-89 MSC: Primary 03E35; Secondary 54A35, 54D15, 54D20, 54G20. DOI: 10.4064/fm201-1-2

Streszczenie

We introduce a generalization of a Dowker space constructed from a Suslin tree by Mary Ellen Rudin, and the rectangle refining property for forcing notions, which modifies the one for partitions due to Paul B. Larson and Stevo Todorčević and is stronger than the countable chain condition. It is proved that Martin's Axiom for forcing notions with the rectangle refining property implies that every generalized Rudin space constructed from Aronszajn trees is non-Dowker, and that the same can be forced with a Suslin tree. Moreover, we consider generalized Rudin spaces constructed with some types of non-Aronszajn $\omega _1$-trees under the Proper Forcing Axiom.

Autorzy

  • Teruyuki YoriokaDepartment of Mathematics
    Shizuoka University
    Ohya 836, Shizuoka, 422-8529, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek