Results and open questions on some invariants measuring the dynamical complexity of a map

Tom 206 / 2009

Jaume Llibre, Radu Saghin Fundamenta Mathematicae 206 (2009), 307-327 MSC: 37-02, 37B40, 37C15, 37C05. DOI: 10.4064/fm206-0-19

Streszczenie

Let $f$ be a continuous map on a compact connected Riemannian manifold $M$. There are several ways to measure the dynamical complexity of $f$ and we discuss some of them. This survey contains some results and open questions about relationships between the topological entropy of $f$, the volume growth of $f$, the rate of growth of periodic points of $f$, some invariants related to exterior powers of the derivative of $f$, and several invariants measuring the topological complexity of $f$: the degree (for the case when the manifold is orientable), the spectral radius of the map induced by $f$ on the homology of $M$, the fundamental-group entropy, the asymptotic Lefschetz number and the asymptotic Nielsen number. In general these relations depend on the smoothness of $f$. Various examples are provided.

Autorzy

  • Jaume LlibreDepartament de Matematiques
    Universitat Autonoma de Barcelona
    Bellaterra, 08193, Spain
    e-mail
  • Radu SaghinCentre de Recerca Matematica
    Apartat 50
    Bellaterra, 08193, Spain
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek