The Suslinian number and other cardinal invariants of continua

Tom 209 / 2010

T. Banakh, V. V. Fedorchuk, J. Nikiel, M. Tuncali Fundamenta Mathematicae 209 (2010), 43-57 MSC: Primary 54F15; Secondary 54C05, 54F05, 54F50. DOI: 10.4064/fm209-1-4


By the Suslinian number $\mathop{\rm Sln}(X)$ of a continuum $X$ we understand the smallest cardinal number $\kappa$ such that $X$ contains no disjoint family $\mathbb C$ of non-degenerate subcontinua of size $|\mathbb C|>\kappa$. For a compact space $X$, $\mathop{\rm Sln}(X)$ is the smallest Suslinian number of a continuum which contains a homeomorphic copy of $X$. Our principal result asserts that each compact space $X$ has weight $\le\mathop{\rm Sln}(X)^+$ and is the limit of an inverse well-ordered spectrum of length $\le \mathop{\rm Sln}(X)^+$, consisting of compacta with weight $\le\mathop{\rm Sln}(X)$ and monotone bonding maps. Moreover, $w(X)\le\mathop{\rm Sln}(X)$ if no $\mathop{\rm Sln}(X)^+$-Suslin tree exists. This implies that under the Suslin Hypothesis all Suslinian continua are metrizable, which answers a question of Daniel et al. [Canad. Math. Bull. 48 (2005)]. On the other hand, the negation of the Suslin Hypothesis is equivalent to the existence of a hereditarily separable non-metrizable Suslinian continuum. If $X$ is a continuum with $\mathop{\rm Sln}(X)<2^{\aleph_0}$, then $X$ is 1-dimensional, has rim-weight $\le\mathop{\rm Sln}(X)$ and weight $w(X)\ge\mathop{\rm Sln}(X)$. Our main tool is the inequality $w(X)\le\mathop{\rm Sln}(X)\cdot w(f(X))$ holding for any light map $f:X\to Y$.


  • T. BanakhUniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego
    Kielce, Poland
    Department of Mathematics
    Ivan Franko Lviv National University
    Lviv, Ukraine
  • V. V. FedorchukFaculty of Mechanics and Mathematics
    Lomonosov Moscow State University
    Vorob'evy Gory, 1
    Moscow, Russia
  • J. NikielInstytut Matematyki i Informatyki
    Uniwersytet Opolski
    Oleska 48
    45-052 Opole, Poland
  • M. TuncaliNipissing University
    North Bay, Ontario, Canada

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek