Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Decomposing Borel functions using the Shore–Slaman join theorem

Tom 230 / 2015

Takayuki Kihara Fundamenta Mathematicae 230 (2015), 1-13 MSC: Primary 03E15; Secondary 54H05. DOI: 10.4064/fm230-1-1

Streszczenie

Jayne and Rogers proved that every function from an analytic space into a separable metrizable space is decomposable into countably many continuous functions with closed domains if and only if the preimage of each $F_\sigma $ set under that function is again $F_\sigma $. Many researchers conjectured that the Jayne–Rogers theorem can be generalized to all finite levels of Borel functions. In this paper, by using the Shore–Slaman join theorem on the Turing degrees, we show the following variant of the Jayne–Rogers theorem at finite and transfinite levels of the hierarchy of Borel functions: For all countable ordinals $\alpha $ and $\beta $ with $\alpha \leq \beta <\alpha \cdot 2$, every function between Polish spaces having small transfinite inductive dimension is decomposable into countably many Baire class $\gamma $ functions with $\mathbf {\Delta }^0_{\beta +1}$ domains such that $\gamma +\alpha \leq \beta $ if and only if the preimage of each $\Sigma ^0_{\alpha +1}$ set under that function is $\Sigma ^0_{\beta +1}$, and the transformation of a $\Sigma ^0_{\alpha +1}$ set into the $\Sigma ^0_{\beta +1}$ preimage is continuous.

Autorzy

  • Takayuki KiharaSchool of Information Science
    Japan Advanced Institute of Science and Technology
    1-1 Asahidai
    Nomi, Ishikawa, 923-1292 Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek