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Connections between matrix summability ideals and
nonpathological analytic P-ideals

by

Jacek Tryba (Gdańsk)

Abstract. We present a new characterization of nonpathological analytic P-ideals
that uses intersections of matrix summability ideals. Moreover, we show that the matrix
summability ideals are exactly the nonpathological generalized density ideals.

1. Introduction. The class of analytic P-ideals is one of the most pop-
ular objects in the study of ideals thanks to Solecki’s famous theorem [24],
which connects this class of ideals with lower semicontinuous submeasures.
Among the analytic P-ideals, one can distinguish four types of ideals that
have been the subject of numerous studies (e.g. [1, 5, 8, 9, 10, 15, 18]):
Erdős–Ulam, density, matrix summability and generalized density ideals.
The reader is referred to [26] for a detailed comparison of these classes and a
revised version of Farah’s characterization of those density ideals which are
Erdős–Ulam ideals.

Out of the four aforementioned classes of ideals, the class of matrix
summability ideals is probably the least known one. However, matrix summa-
bility itself (recall that a sequence xn is A-summable to L for an infinite ma-
trix A = (ai,k) if limi→∞

∑∞
k=1 ai,kxk = L) has been researched at least since

Toeplitz’s characterization of regular matrix summability methods in [25].
This topic was especially popular in the 1930s, when, for example, Mazur
showed (see [2, pp. 71–72] or [3, pp. 44–45]) that for a separable linear sub-
space V ⊆ ℓ∞, every continuous linear functional ϕ : V → R is a matrix
summability method, i.e., there exists an infinite matrix (ai,k) such that, for
x ∈ V , limi→∞

∑∞
k=1 ai,kxk makes sense and is equal to ϕ(x).
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The issue of relations between matrix summability and ideal convergence
(recall that, for an ideal I on N, a real sequence xn is I-convergent to L if
{n ∈ N : |xn−L| > ε} ∈ I for every ε > 0) can be traced back to the question
posed by Mazur in the Scottish Book (see [22, Problem 5, p. 55]) whether
Id-convergence (see Definition 2.9) is equal to some matrix summability
method in the realm of bounded sequences. This problem was solved many
years later by Khan and Orhan, who showed in [19, Theorem 2.2] that for
any matrix summability ideal I (thus, in particular, for Id), I-convergence
is some matrix summability method for all bounded sequences (see [11] for
more information and an easy observation that this result does not hold for
any other ideals).

Before Khan and Orhan proved the above-mentioned result, Fridy and
Miller [13, Theorem 4] proved that for each matrix ideal I, I-convergence on
ℓ∞ is the intersection of some matrix summability methods, i.e. there exists
a family of matrices M such that a sequence x ∈ ℓ∞ is I-convergent to L
if and only if it is A-summable to L for each A ∈ M. Later, Gogola, Mačaj
and Visnyai [14, Theorem 4.4] proved that a similar result holds for another
family of ideals and they asked [14, Problem 4.6] whether the same holds for
every ideal I. This problem was answered negatively by Filipów and Tryba
[11] who later [12] characterized when I-convergence coincides with a single
summability method, a union or an intersection of such methods, both in
the realm of bounded sequences and the realm of all sequences. The most
intriguing of these characterizations was [12, Theorem 5.5], which stated that
I-convergence is the intersection of some matrix summability methods for
all bounded sequences if and only if I is the intersection of some matrix
summability ideals. In [12] one can also find a number of examples of ideals
that are intersections of matrix summability ideals and the claim that all
nonpathological analytic P-ideals share this property [12, Theorem 5.14].
The authors also ask [12, Question 1] about examples of pathological Fσ or
analytic P-ideals that have this property.

In the current paper, we present two main results. The first is that an
analytic P-ideal is the intersection of some matrix summability ideals if and
only if it is nonpathological. The second is that a generalized density ideal
is a matrix summability ideal if and only if it is nonpathological.

Our work on the first main result is a continuation of the line of research
in [13, 14, 12]. The results obtained improve [12, Theorem 5.14] and the
theorem of Laczkovich and Recław [21, Lemma 11] about extendability of
nonpathological analytic P-ideals to matrix summability ideals. This allows
us to answer the question posed in [12] about the existence of pathologi-
cal analytic P-ideals that are intersections of matrix summability ideals and
find a new characterization of nonpathological analytic P-ideals. This new
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characterization may be slightly easier to use than Hrušák’s [16] as it might
be easier to check whether an ideal can be extended to some Erdős–Ulam
ideal than whether it is below some Erdős–Ulam ideal in the Katětov order.
Moreover, by using our new results, we may be able to shed some light on
the rather unexplored topic of nonpathological Fσ ideals. While the current
article is devoted to analytic P-ideals, we can point out that since every non-
pathological Fσ ideal can be represented as the intersection of some matrix
summability ideals by [12, Theorem 5.7], it follows from the second remark
following Corollary 3.9 that all nonpathological Fσ ideals have to be below
Id in the Katětov order.

Our second main result answers Question 1 from [26] and gives a full
characterization of generalized density ideals which are matrix summabil-
ity ideals. Thus we enrich and almost complete the results presented in [26]
about relations between the four classes of ideals mentioned in the first para-
graph of this introduction. One open issue remains: to characterize those
matrix summability ideals which are density ideals.

Our second result may also have some application to the question when
an ideal I is representable in a Banach space X, i.e., when I equals
{A ⊆ N :

∑
n∈A f(n) is unconditionally convergent in X} for some function

f : N → X. By [6, Theorem 4.4] an ideal is representable in some Ba-
nach space if and only if it is a nonpathological analytic P-ideal. A large
part of [6] is devoted to representation of ideals in the Banach space c0 (see
[6, Question 5.10]). The authors show that nonpathological generalized den-
sity ideals are representable in c0 (see [6, Example 4.2]) and that every ideal
representable in c0 that cannot be extended to any summable ideal has to be
a generalized density ideal [6, Proposition 5.9]. It follows from the present pa-
per that ideals representable in c0 which are not contained in any summable
ideal have to be matrix summability ideals.

The article is organized as follows. In Section 2 we present the defini-
tions of various properties and classes of ideals used throughout the paper.
Section 3 is devoted to showing that an analytic P-ideal can be represented
as the intersection of some matrix summability ideals if and only if it is
nonpathological, thus partially answering Question 1 from [12]. A number of
statements equivalent to that result are also obtained; they are summarized
in Corollary 3.12. In Section 4 we answer Question 1 from [26] by showing
that an ideal is a matrix summability ideal if and only if it is a nonpatho-
logical generalized density ideal.

2. Preliminaries

Definition 2.1. An ideal on N := {1, 2, . . .} (for short, an ideal) is a
family I ⊆ P(N) that satisfies the following properties:
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(1) if A,B ∈ I then A ∪B ∈ I,
(2) if A ⊆ B and B ∈ I then A ∈ I,
(3) I contains all finite subsets of N,
(4) N ̸∈ I.

We denote by Fin the ideal of all finite subsets of N.

Remark 2.2. We also consider ideals on any infinite countable set by
identifying this set with N via a fixed bijection.

Definition 2.3. For an ideal I and a set A ̸∈ I we define the restriction
of the ideal I to A by I↾A = {B ⊆ N : B ∩A ∈ I}.

Definition 2.4. Let I and J be ideals on X and Y respectively.
We say that I and J are isomorphic (written I ≈ J ) if there exists

a bijection f : X → Y such that A ∈ I ⇔ f [A] ∈ J for every A ⊆ X.
We say that I is below J in the Rudin–Blass order (written I ≤RB J )

if there is finite-to-one function f : Y → X such that for every A ⊆ X we
have A ∈ I if and only if f−1[A] ∈ J .

We say that I and J are Rudin–Blass equivalent (for short, ≤RB-equiv-
alent) if I ≤RB J and J ≤RB I.

We say that I is below J in the Katětov order (written I ≤K J ) if there
is a function f : Y → X such that for every A ⊆ X we have A ∈ I ⇒
f−1[A] ∈ J .

We say that I and J are Katětov equivalent (for short, ≤K-equivalent)
if I ≤K J and J ≤K I.

Definition 2.5. An ideal I is dense (or tall) if for every infinite A ⊆ N
there is an infinite B ∈ I such that B ⊆ A.

Definition 2.6. A map ϕ : P(N) → [0,∞] is a submeasure on N if

(1) ϕ(∅) = 0,
(2) if A ⊆ B then ϕ(A) ≤ ϕ(B),
(3) ϕ(A ∪B) ≤ ϕ(A) + ϕ(B).

We say that a (sub)measure ϕ is concentrated on a set A ⊆ N if {n ∈ N :
ϕ({n}) > 0} ⊆ A and lower semicontinuous if ϕ(A) = limn→∞ ϕ(A ∩ [1, n])
for each A ⊆ N. We consider a lower semicontinuous submeasure ϕ to be
nonpathological if ϕ(A) = sup {µ(A) : µ≤ ϕ, µ is a measure} for each A ⊆ N.

Definition 2.7. An ideal I on X is a P-ideal if for every countable
family A ⊆ I there is B ∈ I such that A \B is finite for every A ∈ A.

Most of the results in this paper concern analytic P-ideals. Therefore, let
us recall a well-known characterization of analytic P-ideals.

Theorem 2.8 (Solecki [24]). The following conditions are equivalent:

• I is an analytic P-ideal.
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• I = Exh(ϕ) := {A ⊆ N : limn→∞ ϕ(A \ [1, n]) = 0} for some lower
semicontinuous submeasure ϕ such that limn→∞ ϕ(N \ {1, . . . , n}) ̸= 0.

We say that an analytic P-ideal I is nonpathological if there exists a non-
pathological, lower semicontinuous submeasure such that I = Exh(ϕ).

Let us now define several classes of ideals that will be used throughout
the paper. Each of these classes has been extensively studied (e.g. [4, 6, 8,
9, 10, 15, 18, 20]), and the relations between them were described in detail
in [26]. We will present them in strictly increasing order, i.e. each class of
ideals is contained in all of the classes that appear below it.

Definition 2.9 ([18]). Let f = (fn) be a sequence of nonnegative reals
such that f1 > 0,

∑∞
n=1 fn = ∞ and limi→∞ fn/

∑
i≤n fi = 0. The family

EUf =

{
A ⊆ N : lim

n→∞

∑
i∈A,i≤n fi∑

i≤n fi
= 0

}
is called the Erdős–Ulam ideal generated by f . The ideal

Id =

{
A ⊆ N : lim

n→∞

|A ∩ {1, . . . , n}|
n

= 0

}
of all sets of asymptotic density zero is the Erdős–Ulam ideal EUf for any
constant sequence f .

Definition 2.10 ([10]). Let (In) be a sequence of finite, pairwise disjoint
intervals in N and let (µn) be a sequence of measures such that each µn is
concentrated on In. Then I = {A ⊆ N : limn→∞ µn(A) = 0} is called a
density ideal on intervals.

Definition 2.11 ([9]). Let (An) be a sequence of finite, pairwise disjoint
sets in N and let (µn) be a sequence of measures such that each µn is con-
centrated on An. Then I = {A ⊆ N : limn→∞ µn(A) = 0} is called a density
ideal on disjoint sets.

These two classes are not exactly the same, but they are clearly identical
up to isomorphism (i.e. every ideal of either class is isomorphic to some ideal
from the other class). By density ideals one can mean either of these classes,
but we will generally assume it is the latter as it is the larger one. However,
all results in this paper will be correct and their proofs will stay the same
regardless of which of these definitions is used.

Definition 2.12 ([7, 26]). We say that a nonnegative matrix A = (ai,k)
is regular if

(1) limi→∞ ai,k = 0 for every k ∈ N,
(2) supi

∑
k∈N ai,k < ∞,

(3) limi→∞
∑

k∈N ai,k = 1.
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Definition 2.13 ([8]). For a nonnegative matrix A = (ai,k) we define
the family

I(A) =
{
B ⊆ N : lim

i→∞

∑
k∈B

ai,k = 0
}
.

A set I ⊆ P(N) is called a matrix summability ideal if I = I(A) for some
nonnegative, regular matrix A. (It is easy to see that I is indeed an ideal in
that case.)

Observe that matrix summability ideals are nonpathological analytic
P-ideals as by [4, Proposition 12] every I(A) is equal to Exh(ϕ), where
ϕ is given by ϕ(B) = supn∈N

∑
k∈B an,k for every B ⊆ N. There are plenty

of nonpathological analytic P-ideals that are not matrix summability ideals,
though, as can be seen by e.g. [20, Theorem 4.24].

Definition 2.14 ([10]). Let (In) be a sequence of finite, pairwise disjoint
intervals in N and let (ϕn) be a sequence of submeasures such that each ϕn

is concentrated on In. Then I = {A ⊆ N : limn→∞ ϕn(A) = 0} is called
a generalized density ideal.

3. Intersections of matrix ideals

Proposition 3.1. Every matrix summability ideal can be represented as
the intersection of some density ideals.

Proof. Take a matrix summability ideal I(A). By [11, Lemma 2.28] we
can assume that for every n ∈ N we have

∑∞
k=1 an,k = 1 and there are only

finitely many k with an,k ̸= 0. Let B ̸∈ I(A). It is enough to construct
a density ideal IB with B ̸∈ IB and I(A) ⊆ IB, because then

I(A) =
⋂

B ̸∈I(A)

IB.

Since B ̸∈ I(A), there is some α > 0 and an infinite set Z ⊆ N such that
for every n ∈ Z we have

∑
k∈B an,k > α. Now, we will construct inductively

two sequences, (nj) and (kj). Let n1 be the smallest element of Z and let k1
be the largest k ∈ N with an1,k ̸= 0. Suppose we have defined nj and kj for
some j ∈ N. Then we take as nj+1 the smallest n ∈ Z greater than nj such
that for every i ≥ n we have

∑
k≤kj

ai,k < α/2. As before, let kj+1 be the
largest k ∈ N with anj+1,k ̸= 0.

Now that we have constructed the sequences (nj) and (kj), let I1 =
[1, k1] and Ij = (kj−1, kj ] for j > 1. Define the measure µj by putting
µj({k}) = anj ,k for k ∈ Ij and µj({k}) = 0 otherwise. Let IB = {C ⊆ N :
limj→∞ µj(C) = 0}. Clearly, IB is a density ideal and it remains to show
that it has the required properties.
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First, notice that B ̸∈ IB. Indeed, since for every j ∈ N we have∑
k∈B anj ,k > α, we obtain

µj(B) =
∑

k∈B∩Ij

anj ,k ≥
∑
k∈B

anj ,k −
∑

k≤kj−1

anj ,k > α− α

2
=

α

2
.

Therefore, B ̸∈ IB.
To see that I(A) ⊆ IB, take C ∈ I(A). Then for every ε > 0 there is

some J ∈ N such that for every n ≥ nJ we have
∑

k∈C an,k < ε. It follows
that for every j ≥ J we get

µj(C) ≤
∑
k∈C

anj ,k < ε,

thus C ∈ IB.

Proposition 3.2. Every dense density ideal can be represented as the
intersection of some Erdős–Ulam ideals.

Proof. Let I be a dense density ideal and let B ̸∈ I. Once again, it is
enough to construct an Erdős–Ulam ideal IB with B ̸∈ IB and I ⊆ IB. It
is easy to see that I↾B is a dense density ideal. Therefore, by [26, Propo-
sition 3.18] there exists C ̸∈ I↾B such that I↾C is an Erdős–Ulam ideal.
Since N \ B ∈ I↾B, we can assume that C ⊆ B. Let IB = I↾C. Obviously,
C ̸∈ I↾C, thus B ̸∈ IB. It is also easy to see that I ⊆ IB because IB is
a restriction of I.

Proposition 3.3. Every density ideal can be represented as the inter-
section of some Erdős–Ulam ideals.

Proof. Let I be a density ideal and take B ̸∈ I. As before, it is enough
to find an Erdős–Ulam ideal IB with B ̸∈ IB and I ⊆ IB. If I↾B is dense,
we can find such an IB by Proposition 3.2. If I↾B is not dense then we can
find an infinite set A ⊆ B such that I↾A = Fin↾A. In this case, simply define
the sequence (fn) by fn = 1 for n ∈ A ∪ {1} and fn = 0 otherwise. Take
IB = EUf . It is easy to see that I ⊆ IB and B ⊇ A ̸∈ IB, thus B ̸∈ IB.

Corollary 3.4. An ideal can be represented as the intersection of some
Erdős–Ulam ideals if and only if it can be represented as the intersection of
some matrix summability ideals.

Proof. The ‘only if’ part follows from the fact that every Erdős–Ulam
ideal is a matrix summability ideal. The ‘if’ part follows from Propositions 3.1
and 3.3.

Theorem 3.5. If I is a nonpathological analytic P-ideal then it can be
represented as the intersection of some Erdős–Ulam ideals.
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Proof. By [12, Theorem 5.14] every nonpathological analytic P-ideal can
be represented as the intersection of some matrix summability ideals. Thus,
the theorem follows from Corollary 3.4.

To show that the implication in the above theorem can be reversed
for analytic P-ideals, we will use the following result of Hrušák and Meza-
Alcántara.

Theorem 3.6 ([16, Corollary 5.26], [23, Theorem 3.7.5] or [17, Corol-
lary 4.6]). Let I be an analytic P-ideal. Then I is nonpathological if and
only if for every A ̸∈ I we have I↾A ≤K Id.

Lemma 3.7. Let I be an ideal and let A ̸∈ I. If there exists an Erdős–
Ulam ideal EUf with I ⊆ EUf and A ̸∈ EUf then there exists an Erdős–Ulam
ideal EUg with I↾A ⊆ EUg.

Proof. Let (In) be pairwise disjoint intervals in N and (pn) be probability
measures concentrated on In with limn→∞maxk∈N pn({k}) = 0, such that
EUf = {B ⊆ N : limn→∞ pn(B) = 0} (there are such by [9, Theorem
1.13.3(a)]). Since A ̸∈ EUf , there exists a sequence (in) and some α > 0
such that limn→∞ pin(A) = α.

Consider the sequence (µn) of measures defined by µn({k}) = pin({k})
for k ∈ A∩ Iin and µn({k}) = 0 otherwise. Then limn→∞ µn(N) = α, µn are
concentrated on pairwise disjoint intervals Iin and limn→∞ supk∈N µn({k})
= 0. Therefore, the measures µn fulfill all five conditions of [26, Theorem 3.7],
sufficient for EUg = {B ⊆ N : limn→∞ µn(B) = 0} to be an Erdős–Ulam
ideal.

Notice that since µn(B) ≤ pin(B) for all n ∈ N and B ⊆ N, we have
I ⊆ EUf ⊆ EUg. Moreover, µn(N \ A) = 0 for all n ∈ N, thus N \ A ∈ EUg.
By combining these two facts we obtain I↾A ⊆ EUg.

Theorem 3.8. Let I be an analytic P-ideal. Then it can be represented as
the intersection of some Erdős–Ulam ideals if and only if I is nonpathological.

Proof. The ‘if’ part is Theorem 3.5. To prove the ‘only if’ part, take a
pathological analytic P-ideal I. By Theorem 3.6, there exists A ̸∈ I such that
I↾A ̸≤K Id. Since all Erdős–Ulam ideals are ≤RB-equivalent (and therefore
≤K-equivalent) by [9, Lemma 1.13.10], we find that I↾A ̸≤K EUf for any
Erdős–Ulam ideal EUf . It follows that I↾A is not contained in any Erdős–
Ulam ideal. Therefore, by Lemma 3.7 there is no Erdős–Ulam ideal EUf

containing I with A ̸∈ EUf . Hence I cannot be represented as an intersection
of Erdős–Ulam ideals.

Thus, we can partially answer Question 1 from [12] in the following way.

Corollary 3.9. If I is a pathological analytic P-ideal then it cannot be
represented as an intersection of matrix summability ideals.
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Remark 3.10. If an ideal is the intersection of some matrix summability
ideals then it does not have to be a nonpathological analytic P-ideal, because,
for example, in [12, Theorem 5.23] we can find an ideal that is not a P-ideal,
but can be represented as an intersection of matrix summability ideals.

Remark 3.11. By combining Corollary 3.4 with the proof of the ‘only
if’ part of Theorem 3.8 we find that if an ideal I can be represented as an
intersection of matrix summability ideals then I↾A ≤K Id for every A ̸∈ I.

Let us summarize all the results regarding analytic P-ideals mentioned
in this section.

Corollary 3.12. Let I be an analytic P-ideal. The following are equiv-
alent:

(1) I is nonpathological.
(2) For every A ̸∈ I, I↾A ≤K Id .
(3) For every A ̸∈ I, I↾A is contained in some Erdős–Ulam ideal.
(4) I can be represented as the intersection of some Erdős–Ulam ideals.
(5) I can be represented as the intersection of some density ideals.
(6) I can be represented as the intersection of some matrix summability

ideals.
(7) I can be represented as the intersection of some nonpathological analytic

P-ideals.
(8) I-convergence is the intersection of some matrix summability methods

in the realm of all bounded sequences.

4. Generalized density ideals. The following useful result was essen-
tially proved in [7], but since it was scattered among several theorems and
proofs, we present it here with a full proof for completeness.

Proposition 4.1. Let A = (ai,k) be a nonnegative matrix such that

• ∀k limi→∞ ai,k = 0;
• lim supi→∞

∑∞
k=1 ai,k > 0;

• ∃N ∀i≥N
∑∞

k=1 ai,k < ∞.

Then there exists a nonnegative regular matrix B such that I(A) = I(B),
i.e. I(A) is a matrix summability ideal.

Proof. First, since modifying finitely many rows do not change I(A), we
can suppose that

∑∞
k=1 ai,k < ∞ for every i ∈ N. It is also easy to see that

I(A) = I(Z) for Z = (zi,k) given by zi,k = min {ai,k, 1} for all i, k ∈ N, so
we can suppose that ai,k ≤ 1 for all i, k,∈ N. Now, two cases are possible:

(1) ∃M>0 ∃N ∀i≥N
∑∞

k=1 ai,k ∈ [1/M,M ];
(2) lim infi→∞

∑∞
k=1 ai,k = 0 or lim supi→∞

∑∞
k=1 ai,k = ∞.
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In the first case, we can put bi,k = ai,k/
∑

l∈N ai,l. It is easy to see that
B = (bi,k) is a regular matrix such that I(A) = I(B).

In the second case, if lim infi→∞
∑∞

k=1 ai,k > 0 then we define a matrix
C = (ci,k) by simply putting C = A. If, however, lim infi→∞

∑∞
k=1 ai,k is

zero, we find a δ > 0 such that the sets A− = {i ∈ N :
∑

k∈N ai,k < δ}
and A+ = {i ∈ N :

∑
k∈N ai,k ≥ δ} are both infinite; it exists because

lim supi→∞
∑

k∈N ai,k > 0. Enumerate the elements of A− increasingly as
(si) and the elements of A+ as (ti). Define C = (ci,k) by ci,k = asi,k + ati,k.

To prove that I(C) = I(A), take a set D ⊆ N with
∑

k∈D ai,k > ε for
some ε > 0 and infinitely many i ∈ N. Clearly, there are infinitely many
j ∈ N with

∑
k∈D cj,k > ε, thus I(C) ⊆ I(A). On the other hand, if we

take a set D ⊆ N with
∑

k∈D ci,k > ε for some ε > 0 and infinitely many
i ∈ N, then we can find infinitely many i ∈ N with

∑
k∈D asi,k > ε/2 or∑

k∈D ati,k > ε/2. In both cases, D ̸∈ I(A), hence I(A) ⊆ I(C).
Now, we have dealt with the subcase lim infi→∞

∑∞
k=1 ai,k = 0. Observe

that if there is M > 0 such that lim supi→∞
∑∞

k=1 ai,k ≤ M then clearly
lim supi→∞

∑∞
k=1 ci,k ≤ 2M . As in the first case, we can now put bi,k =

ci,k/
∑

l∈N ci,l and it is easy to see that B = (bi,k) is a regular matrix such
that I(B) = I(C) = I(A).

Thus, we now only need to deal with the subcase lim supi→∞
∑∞

k=1 ai,k
= ∞, which implies that lim supi→∞

∑∞
k=1 ci,k = ∞. First, notice that since

lim infi→∞
∑∞

k=1 ci,k > 0, there is an M ∈ N such that
∑∞

k=1 ci,k ≥ 1/M for
almost all i ∈ N. Since multiplying all ci,k by M will not change the ideal,
we can suppose that

∑∞
k=1 ci,k ≥ 1 for almost all i ∈ N. Moreover, since for

Z = (zi,k) given by zi,k = min{ci,k, 1} for all i, k ∈ N we get I(Z) = I(C),
we can assume that ci,k ≤ 1 for all i, k,∈ N.

Now, for every i ∈ N let yi ∈ N be such that
∑

k>yi
ci,k < 1/i (we can find

such since
∑

k∈N ci,k < ∞). Then for every i ∈ N we define the set Ni = {D ⊆
[1, yi] :

∑
k∈D ci,k ∈ [1, 2)} and take ni =

∑
j≤i |Nj |. Since supk∈N ci,k ≤ 1

for all i ∈ N and lim infi→∞
∑

k∈N ci,k ≥ 1, Ni is nonempty for almost all i.
Enumerate the elements of every Ni in any order as (Dni−1+1, . . . , Dni),
where n0 = 0.

We construct the matrix B = (bj,k) in the following way. If j ∈ (ni, ni+1]
we take bj,k = ci+1,k/

∑
k∈Dj

ci+1,k for k ∈ Dj and bj,k = 0 otherwise. Then
B is a regular matrix as

∑
k∈N bj,k = 1 for all j ∈ N and limj→∞ bj,k = 0 for

every k ∈ N (because limi→∞ ci,k = 0 for every k ∈ N).
It is easy to see that I(A) = I(C) ⊆ I(B) since

∑
k∈D bj,k ≤

∑
k∈D ci+1,k

for every D ⊆ N and j ∈ (ni, ni+1]. To finish this proof, we need to show
that I(B) ⊆ I(C). Take D ̸∈ I(C). Then there is an ε ∈ (0, 1) and infinitely
many i ∈ N such that

∑
k∈D ci,k > ε. Therefore, there are also infinitely

many i ∈ N such that
∑

k∈D∩[1,yi] ci,k > ε/2. It follows that for every such i
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we can find a set Ki ⊆ D∩ [1, yi] such that
∑

k∈Ki
ci,k ∈ (ε/2, 2), hence there

is a set Li with Ki ⊆ Li ⊆ [1, yi] and
∑

k∈Li
ci,k ∈ [1, 2). Since Li belongs

to Ni, there is a j ∈ (ni−1, ni] such that Li = Dj and∑
k∈D

bj,k ≥
∑
k∈Ki

bj,k >
∑
k∈Ki

ci,k
2

>
ε

4
.

Since there are infinitely many such i ∈ N, it follows that D ̸∈ I(B).

Remark 4.2. Note that the first condition of Proposition 4.1 is equiva-
lent to Fin ⊆ I(A), and the second condition is equivalent to N ̸∈ I(A).

If the third condition alone does not hold for A then (following [7]) A is
called a semiregular matrix of type 2, and I(A) does not have to be a matrix
summability ideal. For example, the summable ideal I1/n = {X ⊆ N :∑

n∈X 1/n < ∞} is equal to I(B) for some semiregular matrix B of type 2
(see [7, Proposition 4.6]), but I1/n is not a matrix summability ideal by
[11, Proposition 4.11]. Further details about ideals generated by semiregular
matrices can be found in [7].

We will need one more simple result that may be known but we could
not find it in the literature.

Lemma 4.3. If I is a nonpathological generalized density ideal then there
exists a sequence (In) of pairwise disjoint intervals in N and a sequence (ϕn)
of nonpathological submeasures such that each ϕn is concentrated on In and
I = {A ⊆ N : limn→∞ ϕn(A) = 0}.

Proof. It is enough to take ϕn(A) = ϕ(A ∩ In), where ϕ is a nonpatho-
logical submeasure such that I = Exh(ϕ).

Finally, we can now prove the main result of this section and thus answer
Question 1 from [26].

Theorem 4.4. If I is a nonpathological generalized density ideal then I
is a matrix summability ideal.

Proof. Let (In) be pairwise disjoint intervals in N and (ϕn) be submea-
sures concentrated on In such that I = {A ⊆ N : limn→∞ ϕn(A) = 0}. Since
I is nonpathological, we can assume by the previous lemma that each ϕn is
nonpathological. Moreover, we can assume that ϕn(A) < ∞ for every A ⊆ N
since each ϕn has finite support.

For every n ∈ N take jn =
∑n

i=1 |P(Ii)\{∅}| and enumerate the elements
of every P(In) \ {∅} in any order as (Bjn−1+1, . . . , Bjn), where j0 = 0. Since
each ϕn is nonpathological, we can see that for every nonempty Bi ⊆ In
there exists a measure µi such that µi ≤ ϕn and µi(Bi) ≥ ϕn(Bi)/2.

We can now proceed with the construction of a matrix C = (ci,k) (not
necessarily regular) such that I(C) = I. For every i ∈ N we take ci,k =
µi({k}) if k ∈ Bi and put ci,k = 0 otherwise. We will show that I(C) = I.
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If A ∈ I then limn→∞ ϕn(A∩In) = 0. Since for every i ∈ [jn−1+1, jn] we
have µi ≤ ϕn and

∑
k∈A ci,k = µi(A ∩ In), we obtain limi→∞

∑
k∈A ci,k = 0,

thus A ∈ I(C).
If A ̸∈ I then there exists an ε > 0 and an infinite set F ⊆ N such that for

all n ∈ F we have ϕn(A) ≥ ε. Now, for every n ∈ F we find i ∈ [jn−1+1, jn]
such that Bi = A ∩ In. Then

µi(A ∩ In) = µi(Bi) ≥ ϕn(Bi)/2 ≥ ε/2.

Therefore, for infinitely many i ∈ N we have
∑

k∈A ci,k = µi(A ∩ In) ≥ ε/2,
hence lim supi→∞

∑
k∈A ci,k ≥ ε/2 and A ̸∈ I(C).

The matrix C fulfills the conditions of Proposition 4.1 as Fin ⊆ I(C),
N ̸∈ I(C) and for every i ∈ N we have n ∈ N with

∑∞
k=1 ci,k ≤ ϕn(N) < ∞.

Hence there exists a regular matrix B such that I(B) = I(C) = I.

Corollary 4.5. I is a nonpathological generalized density ideal if and
only if I is a matrix summability ideal.
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