dr hab. Jarosław Buczyński
pok. 421 / tel. 22 5228 151


dr hab. Piotr Achinger / prof. IM PAN / e-mail
dr Liena Colarte Gomez / adiunkt / e-mail
dr Neeraj Deshmukh / adiunkt / e-mail
dr hab. Maciej Dołęga / prof. IM PAN / e-mail
dr Veronika Ertl-Bleimhofer / adiunkt / e-mail
dr hab. Christophe Eyral / prof. IM PAN / e-mail
dr Jędrzej Garnek / adiunkt / e-mail
dr Sylvain Gaulhiac / adiunkt / e-mail
dr Hans Höngesberg / adiunkt / e-mail
prof. dr hab. Zbigniew Jelonek / profesor / e-mail
dr hab. Michał Kapustka / prof. IM PAN / e-mail
dr Jakub Koncki / adiunkt / e-mail
dr Victor Nador / adiunkt / e-mail
mgr Feliks Rączka / asystent / e-mail
dr Anna Szumowicz / / e-mail
dr hab. Masha Vlasenko / prof. IM PAN / e-mail

O Zakładzie

The Department of Algebra and Algebraic Geometry was founded in 2000. It is, in some sense, a continuation of the IM PAN Department of Algebra in Toruń, directed at first by Jerzy Łoœś and then by Stanisław Balcerzyk. For the history of the latter, see the summary by S. Balcerzyk published in the booklet edited on the occasion of the 50th anniversary of IM PAN. We describe first


PERIOD 2000-2008

The following mathematicians worked in the Department of Algebra and Algebraic Geometry in the period 2000-2008: Janusz Adamus, Marcin Chałupnik, Sławomir Cynk, Piotr Hajac, Joanna Jaszuńska, Zbigniew Jelonek, Paweł Kasprzak, Jarosław Kędra, Oskar Kędzierski, Mariusz Koras, Urlich Kraehmer, Adrian Langer, Tomasz Maszczyk, Jerzy Płonka, Piotr Pragacz (head), Agata Smoktunowicz, Tomasz Szemberg, Marek Szyjewski, Halszka Tutaj-Gasińska, Bronisław Wajnryb, Andrzej Weber, and Bartosz Zieliński.

The spectrum of the interest of mathematicians in the department was marked by the following topics (displayed in alphabetical order):

  1. Affine algebraic geometry (Jelonek)
  2. Algebraic topology (Chałupnik, Weber)
  3. Classical algebra and combinatorics (Pragacz)
  4. Complex projective algebraic geometry (Cynk, Kedzierski, Langer, Pragacz, Tutaj-Gasińska, Szemberg)
  5. Enumerative theory of singularities (Pragacz, Weber)
  6. Geometry and topology of surfaces (Wajnryb)
  7. K-theory (Szyjewski)
  8. Moduli spaces (Langer)
  9. Noncommutative geometry and quantum groups (Hajac, Kasprzak, Kraehmer, Maszczyk, Zieliński)
  10. Noncommutative rings (Smoktunowicz)
  11. Symplectic geometry and topology (Kędra)
  12. Universal algebra (Płonka)

The "center" of mathematical life of the department was the seminar IMPANGA. Its leading subject was complex algebraic geometry. The seminar worked each two weeks (for two sessions with a break for discussions), and gathered algebraic geometers from all around of Poland. The speakers of this seminar included: F. Hirzebruch, H. Esnault, G. van der Geer, J. Kollar and A. Lascoux.

IMPANGA also organized at the Banach Center mini-schools, directed especially towards young researchers from all around of Europe. Let us mention here, e.g., the following mini-schools of IMPANGA : "Characteristic classes" (2002), "Schubert varieties" (2003), and "Moduli spaces" (2005). In 2003, IMPANGA organized jointly with Institutes of Mathematics of Bulgarian, Hungarian and Romanian Academy of Sciences, the Conference and Summer School "Algebraic Geometry, Algebra, and Applications" in Borovetz (Bulgaria). Two sessions, prepared by IMPANGA at the Banach Center for a wider audience (from history and philosophy of sciences), were devoted to Grothendieck (2004) and Hoene-Wroński (2007). 

The outgrowth of seminars and schools of IMPANGA was published in two volumes: 
Topics in cohomological studies of algebraic varieties (2005),
Algebraic cycles, sheaves, shtukas, and moduli (2007), edited by Birkhauser-Verlag, 
and in: 
Hoene-Wroński: Życie, Matematyka i Filozofia (2008), edited by IM PAN.

The seminar IMPANGA also stimulated research of mathematicians not working directly in the department. Let us mention here, e.g., the papers: "A cascade of determinantal Calabi-Yau threefolds" by M. and G. Kapustka from the Jagiellonian University (math.AG/08023669), and "On Thom polynomials for A4(-) via Schur functions" by O. Ozturk from METU in Ankara (Serdica Math. J. 33 (2007), 301-320).

Another very active seminar in the department, organized by P. Hajac and T. Maszczyk, was 
"Noncommutative geometry and quantum groups". For the content of this seminar (among the speakers were Fields medalists: A. Connes and M. Kontsevich), and for many related activities on noncommutative geometry at IM PAN, including the Conference in honor of Paul Baum's 70th Birthday (2007), see

SELECTED PUBLICATIONS in the period 2000-2008:
  • J. Adamus, E. Bierstone and P.D. Milman, Uniform linear bound in Chevalley's lemma, to appear in Canad. J. Math. (2008),
  • T. Bauer, T. Szemberg, Local positivity of principally polarized abelian threefolds, J. Reine Angew. Math. 531 (2001) 191-200,
  • P.F. Baum, P.M. Hajac, R. Matthes and W. Szymański, The K-theory of Heegaard-type quantum 3-spheres, K-Theory 35 (2005), 159-186.
  • P.F. Baum, P.M. Hajac, R. Matthes and W. Szymański, a chapter in the forthcoming volume "Quantum Symmetry in Noncommutative Geometry", European Mathematical Society Publishing House.
  • B. Bojarski, A. Weber, Generalized Riemann-Hilbert transmission and boundary value problems, Fredholm pairs and bordisms, Bull. Polish Acad. Sci. Math. 50 (2002), 479-496.
  • P. Cassou-Nogues, M. Koras and P. Russell, Smooth embeddings of C* into C2, part I., to appear in J. Algebra (2008)
  • S. Cynk, Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), 325-331.
  • T. Hadfield, U. Kraehmer, Twisted Homology of Quantum SL(2), K-Theory 34 (2005), 327-360.
  • P.M. Hajac, R. Matthes and W. Szymański, A locally trivial quantum Hopf fibration, Algebr. Represent. Theory 9 (2006), 121-146.
  • S. Janeczko, Z. Jelonek, Linear automorphisms that are symplectomorphisms, J. of the London Math. Soc. 69 (2004), 503-517.
  • Z. Jelonek, The Łojasiewicz exponent and effective Nullstellensatz, preprint (2003).
  • Z. Jelonek, K. Kurdyka, On asymptotical critical values of a complex polynomial, J. Reine Angew. Math. 565 (2001), 1-11.
  • J. Kędra, D. McDuff, Homotopy properties od Hamiltonian group actions, Geometry and Topology, vol.9 (2005), Paper no.3, pp. 121-162.
  • A. Langer, Semistable principal G-bundles in positive characteristic, Duke Math. J. 128 (2005), 511-540.
  • A. Langer, Moduli spaces and Castelnuovo-Mumford regularity of sheaves on surfaces, Amer. J. of Math. 128 (2006), 373-417.
  • A. Langer, T. Gomez, A. Schmitt, I. Sols, Moduli spaces for principal bundles in arbitrary characteristic, preprint (2006).
  • A. Lascoux, P. Pragacz, Double Sylvester sums for subresultants and multi-Schur functions, J. Symb. Comp. 35 (2003), 689-710.
  • T.H. Lenagan, A. Smoktunowicz, An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension, Journal of the A.M.S. 20 (2007), 989-1001.
  • T. Maszczyk, A pairing between super Lie-Rinehart and periodic cyclic homology, Comm. in Math. Physics, 263 (2006), 737-747.
  • T. Maszczyk, One-dimensional infinitesimal-birational duality through differential operators, Fund. Math. 191 (2006), 23-43.
  • A. Parusiński, P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Alg. Geom. 10 (2001), 63-79.
  • J. Płonka, Subvarieties of the clone extension of the variety of distributive lattices, Algebra Universalis 55 (2006), 175-186.
  • P. Pragacz, Multiplying Schubert classes, in "Topics in cohomological studies of algebraic varieties", Trends in Math., Birkhauser (2005), 163-174.
  • P. Pragacz, Thom polynomials and Schur functions: the singularities I22(-), Annales de l'Institut Fourier 57 (2007), 1487-1508.
  • P. Pragacz, V. Srinivas and V. Pati, Diagonal subschemes and vector bundles, math.AG/0609381 - to appear in the special volume of Quarterly J. of Pure and Appl. Math., dedicated to J-P. Serre on his 80th Birthday (S.T. Yau et al. eds.).
  • P. Pragacz, A. Weber, Positivity of Schur function expansions of Thom polynomials, Fund. Math. 195 (2007), 85-95.
  • A. Smoktunowicz, There are no graded domains with GK dimension strictly between 2 and 3, Inv. Math. 164 (2006), 635-640.
  • A. Smoktunowicz, Some results in noncommutative ring theory, Proceedings of the International Congress of Mathematicians, Madrid, Spain, August 22-30, 2006, Vol 2: Invited talks, 259-269.
  • A. Weber, Pure homology of algebraic varieties, Topology 43 (2004), 635-644.

The above part of the text stems from 2008.

We now pass to

PERIOD 2009-2015

The following mathematicians have worked in the Department of Algebra and Algebraic Geometry in the period 2009-2015: Maciej Borodzik, Weronika Buczyńska, Jarosław Buczyński, Sławomir Cynk, Lionel Darondeau, Christophe Eyral, Marek Hałenda, Grzegorz Kapustka, Oskar Kędzierski, Adrian Langer, Mateusz Michałek, Karol Palka, Piotr Pragacz (head), Sanjay Kumar Singh, Tomasz Szemberg, Saurabh Triverdi, Halszka Tutaj-Gasińska, Masha Vlasenko.

The leading topic in the department is still complex algebraic geometry and the spectrum of the interests in the department (displayed in alphabetical order) is:

  1. Affine algebraic geometry (Palka)
  2. Algebraic geometry in positive characteristic (Achinger, Langer)
  3. Arithmetic algebraic geometry (Achinger, Vlasenko)
  4. Calabi-Yau varieties (Cynk, Kapustka) 
  5. Characteristic classes (Darondeau, Pragacz)
  6. Combinatorial methods in geometry (Michalek, Pragacz)
  7. Combinatorics (Michałek)
  8. Holomorphic and contact symplectic geometry (Buczyński, Kapustka)
  9. Hyperbolic varieties (Darondeau)
  10. Intersection theory and Schubert calculus (Darondeau, Pragacz)
  11. Linear systems (Tutaj-Gasińska, Szemberg)
  12. Moduli spaces (Langer)
  13. Number theory (Vlasenko)
  14. Secant varieties and ranks of polynomials and tensors (Buczyńska, Buczyński)
  15. Singularities (Borodzik, Eyral, Triverdi)
  16. Vector bundles (Langer, Pragacz)

The center of mathematical life of the department is again the seminar IMPANGA. The seminar meets every second Friday (for two sessions) and gathers algebraic geometers from all around Poland (notably from Warsaw, Kraków, Poznań, Gdańsk and Szczecin). The speakers at the IMPANGA Seminar have included: J.P. Brasselet, S. Capell, L. Gruson, L. Katzarkov, V. Kiritchenko, V. Lazic, V. Mehta, M. Oka, T. Peternell, C. Ranestad, B. Totaro and J. Wlodarczyk.

IMPANGA has organized at the Banach Center the following mini-schools: "Thom polynomials and the Green-Griffith conjecture" (2011), "The ubiquity of Wrońskians" (2011), "Okounkov bodies and Nagata type conjectures" (2013), "The geometry of homogeneous varieties" (2013), "Abelian varieties" (2014).  

The two largest events, organized by IMPANGA at the Banach Center in Będlewo, were: "Impanga summer school on algebraic geometry" (2010) and the Conference "IMPANGA 15" (2015). The former event was devoted to Prym varieties and their moduli, moduli spaces of curves and abelian varieties, differential forms and applications to moduli, K3 and Enriques surfaces, invariants of singularities in birational geometry, minimal model program, toric varieties and equivariant cohomology. The latter conference was mainly devoted to Chern class formulas for degeneracy loci, equivariant cohomology of flag varieties, moduli spaces of abelian varieties and surfaces, classes of singular varieties, Thom polynomials, tropical algebraic geometry and its applications, geometry in positive characteristic and filtrations of B-modules.

The lecturers at the conferences, schools and workshops of IMPANGA have included: K. Altmann, D. Anderson, G. Berczi, A. Buch, P. Cascini, C. Ciliberto, I. Coskun, G. Farkas, G. van der Geer, B. Harbourne, J. Huh, J.M. Hwang, M. Kazarian, S. Kebekus, J. Keum, M. Lehn, R. Miranda, S. Mukai, M. Mustata, K. Ono, K. Ranestad, F. Russo, F.O. Schreyer, V. Srinivas, H. Tamvakis and M. Vlasenko.

The outgrowth of seminars, schools and conferences of IMPANGA was published in: Contributions to algebraic geometry (EMS Publishing House, 2012). The next volume of IMPANGA Lecture Notes is in preparation.

For more on Department of Algebra and Algebraic Geometry, please consult:

  • P. Achinger, K($\pi,1$)-neighborhoods and comparison theorems, Compositio Math. 151 (2015), 1945-1964.
  • P. Achinger, A characterization of toric varieties in characteristic p, International Mathematics Research Notices 16 (2015), 6879-6892.
  • T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, T. Szemberg, Bounded Negativity and Arrangements of Lines, Intern. Math. Research Notices 2015 (2015), 9456-9471
  • I. Biswas, S. Singh, Diagonal property of the symmetric product of a smooth curve, Comptes Rendus Mathematique, 353 no. 5 (2015), 445-448
  • M. Borodzik, A. Némethi, The Hodge spectrum of analytic germs on isolated surface singularities. J. Math. Pures Appl. (9) 103 (2015), no. 5, 1132-1156.
  • M. Borodzik, A. Némethi, A. Ranicki, On the semicontinuity of the mod 2 spectrum of hypersurface singularities. J. Algebraic Geom. 24 (2015), no. 2, 379-398. 
  • S. Boucksom, A. Kuronya, C. Maclean, T. Szemberg, Vanishing sequences and Okounkov bodies, Math. Ann. 361 (2015), 811-834
  • J. Buczyński, G. Kapustka, M. Kapustka, Special lines on contact manifolds, arXiv:1405.7792
  • W. Buczyńska, J. Buczyński, J. Kleppe, Z. Teitler, Apolarity and direct sum decomposability of polynomials, to appear in Michigan Math Journal, arXiv:1307.3314
  • S. Cynk, S. Rams, Non-factorial nodal complete intersection threefolds. Commun. Contemp. Math. 15 (2013), no. 5, 1250064, 14 pp.
  • S. Cynk, M. Schütt, Non-liftable Calabi-Yau spaces. Ark. Mat. 50 (2012), no. 1, 23–40.
  • S. Cynk, D. van Straten, Calabi-Yau conifold expansions, Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds, 499-515, Fields Inst. Commun., 67, Springer, New York, 2013.
  • L. Darondeau, Fiber integration on the Demailly tower, Annales de l'Institut Fourier to appear (2015)
  • L. Darondeau, P. Pragacz, Universal push-forwards, arXiv: 1510.07852
  • C. Eyral, M. Ruas, Deformations with constant Le numbers and multiplicity of nonisolated hypersurface singularities, Nagoya Math. J. 218 (2015), 29-50
  • C. Eyral and M. Oka, On the fundamental groups of non-generic R-join-type curves, II J. Math. Soc. Japan (to appear)
  • C. Eyral, Topics in equisingularity theory, IMPAN Lecture Notes, Polish Academy of Sciences, Institute of Mathematics, Warsaw (to appear)
  • V. Golyshev, M. Vlasenko, Equations D3 and spectral elliptic curves, in Feynman Amplitudes, Periods and Motives, Contemporary Mathematics 648 (2015), 135-152
  • A. Iliev, G. Kapustka, M. Kapustka, K. Ranestad, EPW cubes, arXiv:1505.02389 
  • T. Kahle, M. Michałek,  Plethysm and Lattice Point Counting, Foundations of Computational Mathematics (to appear)
  • S. Kaji, P. Pragacz, On diagonals of flag bundles,  arXiv: 1503.03217
  • G. Kapustka, On IHS fourfolds with b2 = 23, Mich. Math. J. vol. 65 (2016), 23 pages
  • M. Koras, K. Palka, The Coolidge-Nagata conjecture, arXiv: 1502.07149
  • A. Langer,  Generic positivity and foliations in positive characteristic, Adv. Math. 277 (2015), 1-23
  • A. Langer, Bogomolov's inequality for Higgs sheaves in positive characteristic, Inv. Math. 199 (2015), 889-920
  • A. Mellit, M. Vlasenko, Dwork's congruences for the constant terms of powers of a Laurent polynomial, International Journal of Number Theory 2016
  • M. Michałek, B. Sturmfels, C. Uhler, P. Zwiernik, Exponential Varieties, Proceedings of London Mathematical Society (to appear)
  • M. Mikosz, P. Pragacz, A. Weber, Positivity of Legendrian Thom polynomials, Journal of  Differential Geometry 89(1) (2011), 111-132
  • N. Nguyen, S. Trivedi, and D. Trotman, A geometric proof of the existence of definable Whitney stratifications, Illinois J. Math. 58, no. 2 (2014), 381-389
  • K. Palka, The Coolidge-Nagata conjecture, part I, Adv. Math. 267 (2014), 1-43
  • K. Palka, Classification of singular Q-homology planes I. Structure and singularities,  Israel J.M. 195 (2013), 37-69
  • P. Pragacz, A Gysin formula for Hall-Littlewood polynomials, Proc. Amer. Math. Soc. 143 (2015)  no.11, 4705-47011
  • S. Triverdi, G. Valette, Flat currents on subanalytic pseudomanifolds, prepint 2015
  • H. Tutaj-Gasińska, C. de Volder, Higher order embeddings of certain blow-ups of $P^2$, Proc. Amer. Math. Soc. 137 (2009) 4089-4097

November 2015

PERIOD 2016-2020
The following mathematicians have worked in the Department of Algebra and Algebraic Geometry in the period 2016-2020: Piotr Achinger, Maciej Borodzik, Aleksandra Borówka, Jarosław Buczyński, Przemysław Chojecki, Sławomir Cynk, Lionel Darondeau, Maciej Dołęga, Boulous El Hilany, Christophe Eyral, Łucja Farnik, Benoit Guerville-Balle, Joachim Jelisiejew, Grzegorz Kapustka, Michał Kapustka, Wojciech Kucharz, Adrian Langer, Hanieh Keneshlou, Marcin Lara, Grzegorz Malara, Michal Marcinkowski, Mateusz Michałek, Henryk Michalewski, Karol Palka, Tomasz Pełka, Piotr Pokora, Piotr Pragacz (head), Filip Rupniewski, Tomasz Szemberg, Saurabh Trivedi, Masha Vlasenko, Alexander Youcis.

The leading topic in the department is still complex algebraic geometry and the spectrum of the interests in the department (displayed in alphabetical order) has included:

    Affine algebraic geometry (Palka, Pełka)
    Algebraic combinatorics (Dołęga)
    Algebraic geometry in positive characteristic (Achinger, Langer)
    Arithmetic algebraic geometry (Achinger, Lara, Vlasenko, Youcis)
    Calabi-Yau varieties (Cynk, G.Kapustka, M.Kapustka)
    Characteristic classes (Darondeau, Pragacz)
    Combinatorial methods in geometry (Michałek)
    Enumerative geometry (Dołęga, Pragacz)
    Hilbert schemes (Jelisiejew)
    Holomorphic contact and symplectic geometry (Buczyński, G.Kapustka, M.Kapustka)
    Hyperbolic varieties (Darondeau)
    Intersection theory and Schubert calculus (Darondeau, Pragacz)
    Linear systems (Farnik, Malara, Szemberg)
    Moduli spaces (Keneshlou, Langer)
    Number theory (Vlasenko)
    Positivity in algebraic geometry (Pragacz)
    Real algebraic geometry (Kucharz)
    Representation theory (Dołęga)
    Secant varieties and ranks of tensors (Buczyński, Jelisiejew, Rupniewski)
    Singularities (Borodzik, El Hilany, Eyral, Trivedi)
    Tangency and Łojasiewicz exponents (Eyral, Pragacz)
    Vector bundles (Langer)

The center of mathematical life of the department is again the seminar IMPANGA. The following mathematicians conducted with P. Pragacz the seminar: in 2015/16 A. Langer, in 2016/17 C. Eyral and A. Langer, in 2017/20 C. Eyral and M. Kapustka. The seminar meets every second Friday (for two sessions) and gathers algebraic geometers from all around Poland (notably from Warsaw, Kraków, Poznań, Gdańsk, Szczecin and Wrocław}. Usually we have 14 meetings of the seminar in an academic year. The speakers at the IMPANGA Seminar have included: H. Esnault, H. Hamm, T. Krasiński, W. Kucharz, J.M. Landsberg, R. Laterveer, T. Mostowski, A. Nemethi, K. O'Grady, A. Parusiński, M. Roth, S. Schroer and J. Schuermann. On January 31, 2020, we hosted the 400th meeting of the IMPANGA seminar with speakers: F. Catanese and Le Dung Trang. Due to the COVID-19 pandemic, the last 4 meetings in Spring 2020 proceeded online.

An important event was publication in 2018 of the proceedings of the conference IMPANGA 15 which held in April 2015 and was organized by participants of the seminar. The volume "Schubert Varieties, Equivariant Cohomology and Characteristic Classes, Impanga 15" appeared in EMS Series of Congress Reports. The editors were: J. Buczyński, M. Michałek and E. Postinghel. Apart from a collection of contributions by the attendees of the conference IMPANGA 15, the book contains the notes from the major lecture series of the seminar in the period 2010–2015. Both original research papers and self-contained expository surveys can be found there. The articles circulate around a broad range of topics within algebraic geometry such as vector bundles, Schubert varieties, degeneracy loci, homogeneous spaces, equivariant cohomology, Thom polynomials, characteristic classes, symmetric functions and algebraic geometry in positive characteristic.

Members of the department organized several workshops and conferences.

M. Donten-Bury, G. Kapustka, M. Kapustka, G. Mongardi and P. Pragacz organized in the period 11-15.09.2017, at the Banach Center in Warsaw, the Workshop "Periodsand Ricci flat manifolds".
G. Kapustka and M. Kapustka organized in Kraków, in the period 18-22.05.2018, the Research Group "Motives of Calabi-Yau manifolds".
K. Palka, J. Pawlikowski, T. Pełka and J. Wiśniewski organized at the Banach Center in Warsaw, in the period 28.05-1.06.2018, the conference "Algebraic Geometry - Mariusz Koras in memoriam".
C. Eyral is a coorganizer of the "Gdańsk-Kraków-Łódź-Warszawa Singularity Seminar", which proceeded in two sessions: in Warsaw in June 2019, and in Kraków in December 2019.
P. Achinger, H. Esnault and J. Fresan organized at the Banach Center in Warsaw, in the period 23-27.09.2019, the conference "Wild Ramification and Irregular Singularities".

Members of the department participated at Simons Semesters in algebraic geometry organized in 2016 by J. Buczyński, S. Cynk and T. Szemberg, and in 2018 by P. Achinger, J. Buczyński, N. Ilten and M. Vlasenko.

Due to the COVID-19 pandemic the Banach Center Workshop "Branched coverings and symmetric functions" conducted by M. Dołęga, and planned for April 2020 did not take place, and is postponed to some later time.

In 2019 two Committees: Organizing and Scientific advanced organization of the conference IMPANGA 20 on Schubert varieties. The Organizing Committee was: C. Eyral, G. Kapustka, M. Kapustka, P. Pragacz and H. Tutaj-Gasińska. The Scientific Committee was: D. Anderson, S. Billey, I. Coskun, L. Manivel and A. Yong. Due to the COVID-19 pandemic the conference IMPANGA 20 planned for June 21-27, 2020 in Będlewo did not take place.  We hope to be able to organize this conference during the summer 2021 in the same place. The new planned date is July 11-17, 2021.
For more on Department of Algebra and Algebraic Geometry, please consult:


    P. Achinger, Wild ramification and K(\pi,1) spaces, Invent. Math. 210 (2017), no. 2, 453–499.
    P. Achinger, J. Witaszek, M. Zdanowicz, Global Frobenius liftability I, Preprint 2017, revised in 2019, to appear in Journal of the European Mathematical Society.
    F. Beukers, M. Vlasenko, Dwork Crystals I, International Mathematics Research Notices, 2020 (
    F. Beukers, M. Vlasenko, Dwork Crystals II, International Mathematics Research Notices, 2020 (
    J. Bochnak, W. Kucharz, Global variants of Hartogs' theorem, Arch. Math. 113 (2019), 281-290.
    M. Borodzik, E. Gorsky, Immersed concordances of links and Heegaard Floer homology, arXiv:1601.07507.
    M. Borodzik, J. Horn, Involutive Heegaard Floer homology and rational cuspidal curves, with Appendix by Andrzej Schinzel, arXiv:1609.08303.
    A. Borówka, Quaternion-Kähler manifolds near maximal fixed point sets of S^1-symmetries, Annali di matematika pura ed applicata 199, pages 1243–1262(2020) (
    M. Branderbursky, M. Marcinkowski, Bounded cohomology of transformation groups (
    W. Buczyńska, J. Buczyński, Apolarity, border rank and multigraded Hilbert scheme, arXiv:1910.01944.
    J. Buczyński, T. Januszkiewicz, J. Jelisiejew, M. Michałek, Constructions of k-regular maps using finite local schemes, Journal of European Mathematical Society, 21, no.6 (2019), 1775–1808.
    J. Buczyński, E. Postinghel, F. Rupniewski, On Strassen's rank additivity for small three-way tensors, SIAM J. Matrix Anal. Appl., 2020, 41(1), 106–133, DOI: 10.1137/19M1243099, arXiv:1902.06582.
    J. Buczyński, J.A. Wiśniewski, with an appendix by A. Weber, Algebraic torus actions on contact manifolds, arXiv:1802.05002, to appear in Journal of Differential Geometry.
    G. Chapuy, M. Dołęga, Non-orientable branched coverings, b-Hurwitz numbers, and positivity for multiparametric Jack expansions, arXiv:2004.07824.
    L. Darondeau, P. Pragacz, Universal Gysin formulas for flag bundles,  International Journal of Mathematics 28, no.11 (2017) 1750077 (23 pages).  
    L. Darondeau, P. Pragacz, Gysin maps, duality, and Schubert classes, Fundamenta Mathematicae 244 (2019), 191-208.
    M. Dołęga, V. Féray, Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., 165 (7), 1193-1282, 2016.
    W. Domitrz, P. Mormul, P. Pragacz, Order of tangency between manifolds, to appear in "Schubert Calculus and its applications in combinatorics and representation theory", Springer Proceedings in Mathematics & Statistics 332.
    A. Dubouloz, K. Palka, The Jacobian Conjecture fails for pseudo-planes, Adv. Math. 339 (2018), 248-284.
    B. El Hilany, Describing the Jelonek set of polynomial maps via Newton polytopes, arXiv:1909.07016.
    B. El Hilany, Counting isolated points outside the image of a polynomial map, arXiv:1909.08339.
    C. Eyral, M. Oka, Non-compact Newton boundary and Whitney equisingularity for non-isolated singularities, Adv. Math. 316 (2017) 94-113.
    C. Eyral, P. Pragacz, On some properties of the Łojasiewicz exponent, arXiv: 2003.13031.
    C. Eyral, M. Ruas, On the Zariski multiplicity conjecture for weighted homogeneous and Newton non-degenerate line singularities, Internat. J. Math. 30 no.11 (2019), 1950053, 17 pages.
    B. Guerville-Ballé, Topology and homotopy of lattice isomorphic arrangements, Proc. Amer. Math. Soc. 148 (2020), 2193-2200.
    J. Jelisiejew, Pathologies on the Hilbert scheme of points, Inventiones Math. doi: 10.1007/s00222-019-00939-5.
    J. Jelisiejew, G. Kapustka, M. Kapustka,  Smoothable zero dimensional schemes and special projections of algebraic varieties, Math. Nachr. 292 (2019), no. 9, 2018–2027. DOI:
    M. Kapustka, M. Rampazzo, Torelli problem for Calabi-Yau threefolds with GLSM description. Commun. Number Theory Phys. 13 (2019), no. 4, 725–761, DOI:
    H. Keneshlou, F. Tanturri, On the unirationality of moduli spaces of pointed curves, arXiv: 2003.07888.    
    M. Koras, K. Palka, The Coolidge-Nagata conjecture, Duke Math. J. 166 (2017), No. 16, 3085-3145.
    W. Kucharz, K. Kurdyka, Rational representation of real functions, Pure Appl. Math. Q., accepted, 14 pages.
    A. Langer, The Bogomolov-Miyaoka-Yau inequality for logarithmic surfaces in positive characteristic, Duke Math. J. 165 (2016) 2737-2769.
    M. Lara, Homotopy exact sequence for the pro-\'etale fundamental group I, arXiv:1910.14015, 2019.
    M. Lara. Homotopy exact sequence for the pro-\'etale fundamental group II, arXiv:1911.01884, 2019.
    M. Michałek, Y. Shitov, Quantum version of Wielandt’s Inequality revisited, IEEE Transactions on Information Theory 65, no. 8,(2019), 5239-5242 (
    K. Palka, Cuspidal curves, minimal models and Zaidenberg's finiteness conjecture, J. Reine Angew. Math. (Crelle's Journal), 747 (2019), 147-174.
    P. Pragacz, On a certain family of U(b)-modules, in: "Schubert varieties, equivariant cohomology and characteristic classes, IMPANGA 15",  EMS Ser. Congr. Rep., EMS Publ. House, Zurich (2018), 203-224.

September 2020


dr hab. Tomasz Adamowicz / prof. IM PAN / e-mail
dr hab. Tomasz Cieślak / prof. IM PAN / e-mail
prof. dr hab. Piotr Gwiazda / profesor / e-mail
dr Karol Hajduk / adiunkt / e-mail
dr hab. Karolina Kropielnicka / prof. IM PAN / e-mail
dr hab. Jarosław Mederski / prof. IM PAN / e-mail
dr hab. Joanna Rencławowicz / prof. IM PAN / e-mail
dr hab. Aneta Wróblewska-Kamińska / prof. IM PAN / e-mail
prof. dr hab. Wojciech Zajączkowski / profesor / e-mail
dr Michał Łasica / adiunkt / e-mail

Tomasz Adamowicz
Areas of interest: Geometric function and mapping theory with relation to PDEs, Carnot-Caratheodory groups and general metric spaces, quasiconformal mappings and related function spaces.

Selected publications:
- T. Adamowicz, P. Hästö, Harnack's Inequality and The Strong p(x)-Laplacian, J. Diff. Equations, Vol. 250, No. 3, (2011), 1631-1649.
- T. Adamowicz, A. Björn, J. Björn, N. Shanmugalingam, Prime ends for domains in metric spaces, Adv. Math. 238 (2013), 459-505.
- T. Adamowicz, The geometry of planar p-harmonic mappings: convexity, level curves and the isoperimetric inequality, Ann. Sc. Norm. Super. Pisa. Vol. XIV(1), 2015, 263-292.
- T. Adamowicz, Three-spheres theorem for p-harmonic mappings Calc. Var. PDEs, 53(3) 2015, 1015-1032.
- T. Adamowicz, B. Warhurst, Mean value property and harmonicity on Carnot-Caratheodory groups, Potential Anal., 52 (2020), 497-525.
- T. Adamowicz, J. Jääskeläinen, A. Koski, The Rado-Kneser-Choquet theorem for p-harmonic mappings between Riemannian surfaces, Rev. Math. Iberoam., 36(6) (2020).

Personal webpage:

Bartosz Bieganowski
Areas of interest: variational methods, Schrödinger-type equations, nonlinear Maxwell equations.

Selected publications:
- B. Bieganowski, S. Secchi, The semirelativistic Choquard equation with a local nonlinear term, Discrete and Continuous Dynamical Systems, Vol. 37, no 7 (2019), 4279-4302.
- B. Bieganowski, The fractional Schrödinger equation with Hardy-type potentials and signchanging nonlinearities, Nonlinear Analysis, Vol. 176 (2018), 117-140.
- B. Bieganowski, T. Cieślak, K. Fujie, T. Senba, Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system, Math. Nachr., Vol. 292, Issue 4 (2019),
- B. Bieganowski, J. Mederski, Nonlinear Schrödinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities, Commun. Pure Appl. Anal., Vol. 17, Issue 1 (2018), p. 143-161.

Tomasz Cieślak
Areas of interest: Partial Differential Equations, Mathematical Physics, Applications.

Selected publications:
- T. Cieślak, Ph. Laurencot, Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system. Discrete Contin. Dyn. Syst. 26, 437-446 (2010).
- T. Cieślak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolicparabolic quasilinear Keller-Segel system in higher dimensions. J. Diff. Equations 252, 5832-5851 (2012).
- T. Cieślak, C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. J. Diff. Equations 258, 2080–2113 (2015).
- T. Cieślak, G. Jamróz, Maximal dissipation in Hunter-Saxton equation for bounded energy initial data. Adv. Math. 290, 590-613 (2016).
- T. Cieślak, K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system. Proc. Amer. Math. Soc. 146, 2529–2540 (2018).
- T. Cieślak, K. Oleszkiewicz, M. Preisner, M. Szumańska, Kinetic energy represented in terms of moments of vorticity and applications. J. Math. Fluid Mech. Paper No. 53, 19 pp. (2019).
- T. Cieślak, J. Siemianowski, A. Święch, Viscosity solutions to an initial value problem for a Hamilton--Jacobi equation with a degenerate Hamiltonian occurring in the dynamics of peakons, (preprint, 2020).

Personal web page: not available.

Piotr Gwiazda
Areas of interest: Partial differential equations, Calculus of variations and optimal control, Functional analysis, Numerical analysis, Fluid mechanics, Mechanics of deformable solids, Mathematical Biology.

Selected publications:
- P. Gwiazda, O. Kreml, A. Świerczewska-Gwiazda, Dissipative measure-valued solutions for general conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020), no. 3, 683–707.
- C. Bardos, P. Gwiazda, A. Świerczewska-Gwiazda, E.S. Titi, E. Wiedemann, Onsager's conjecture in bounded domains for the conservation of entropy and other companion laws. Proc. A.475 (2019), no. 2230, 20190289, 18 pp.
- P. Gwiazda, B. Perthame, A. Świerczewska-Gwiazda, A two-species hyperbolic-parabolic model of tissue growth. Comm. Partial Differential Equations 44 (2019), no. 12, 1605–1618.
- J. A.Carrillo, P. Gwiazda, K. Kropielnicka, A.K. Marciniak-Czochra, The escalator boxcar train method for a system of age-structured equations in the space of measures. SIAM J. Numer. Anal. 57 (2019), no. 4, 1842–1874.
- I. Chlebicka, P. Gwiazda, A. Zatorska-Goldstein, Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev's phenomenon. Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 5, 1431–1465.
- P. Gwiazda, M. Michálek, A. Świerczewska-Gwiazda, A note on weak solutions of conservation laws and energy/entropy conservation. Arch. Ration. Mech. Anal. 229 (2018), no. 3, 1223–1238.
- E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, E. Wiedemann, Regularity and energy conservation for the compressible Euler equations. Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1375–1395.
- E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Differential Equations 55 (2016), no. 6, Art. 141, 20 pp.
- M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012), no. 4, 2756–2801.
- J.A. Carrillo, R.M. Colombo, P. Gwiazda, A. Ulikowska, Structured populations, cell growth and measure valued balance laws. J. Diff. Eq. 252 (2012), no. 4, 3245–3277.

Personal web page:

Bronisław Jakubczyk
Areas of interest: Geometry in Differential Equations, Geometric Control Theory, Singularities in Geometry.

Selected publications (after 2000):
- B. Jakubczyk, M. Zhitomirskii, Local reduction theorems and invariants for singular contact structures, Ann. Inst. Fourier, Vol. 52 (2001), 237-295.
- B. Jakubczyk, P. Domański, Linear continuous division for exterior and interior products, Proc. Am. Math. Soc., Vol. 131, No.10 (2003), 3163-3175.
- B. Jakubczyk, M. Zhitomirskii, Distributions of corank 1 and their characteristic vector fields, Trans. Am. Math. Soc., Vol. 355, No. 7 (2003), 2857-2883.
- B. Jakubczyk, W. Respondek, Bifurcations of 1-parameter families of control-affine systems in the plane, SIAM J. Control and Optimiz., Vol. 44 (2006), 2038-2062.
- B. Jakubczyk, W. Kryński, F. Pelletier, Characteristic vector fields of generic distributions of corank 2, Ann. l'Institut Henri Poincaré, Analyse Non Lineaire, Vol. 26 (2009), 23-38.
- B. Jakubczyk, G. Pietrzkowski, Integral representations of separable states, Rep. Math. Physics, Vol. 63, No.1 (2009), 111-130.
- J.P. Gauthier, B. Jakubczyk, V. Zakalyukin, Motion planning and fastly oscillating controls, SIAM J. Control and Optimiz., Vol. 48, No.5 (2010) 3433-3448.
- M. Barbero-Linan, B. Jakubczyk, Second order conditions for optimality and local controllability of discrete-time systems, SIAM J. Control and Optimiz., Vol. 53, No.1 (2015), 352–377.
- B. Jakubczyk, Exterior multiplication with singularities: a Saito theorem in vector bundles, Ann. Polon. Math. Vol. 125, No. 2 (2020), 117-138.

Personal web page:

Stanisław Janeczko
Areas of interest: Differential topology, geometric and algebraic singularities, Mathematical physics.

Selected publications:
- G. Ishikawa, S. Janeczko, Symplectic bifurcations of plane curves and isotropic liftings, Quart. J. Math. 54 (2003), 1-30.
- S. Janeczko, Z. Jelonek, Linear automorphisms that are symplectomorphisms, Journal of the London Math. Soc. (2), 69, (2004), 503-517.
- W. Domitrz, S. Janeczko, M. Zhitomirskii, Symplectic singularities of varieties: the method of algebraic restrictions, Journal fur die Reine und Angewandte Math. 618 (2008), 197-235.
- P.J. Giblin, S. Janeczko, Geometry of curves and surfaces through the contact map, Topology and Its Applications, 159 (2012), 379380.
- S. Janeczko, Z. Jelonek, M. A. S. Ruas, Symmetry defect of algebraic varieties, ASIAN J. MATH. Vol. 18, No. 3, (2014), 525-544.
- T. Fukuda, S. Janeczko, On the Poisson algebra of a singular map, Journal of Geometry and Physics, Vol. 86 (2014), 194-202.
- W. Domitrz, S. Janeczko,P. Rios, M.A.S. Ruas, Singularities of affine equidistants: extrinsic geometry of surfaces in 4-space, Bull. Braz. Math. Soc., New Series, 47, (2016),1155–1179.
- P. Giblin, S. Janeczko, Bifurcation sets of families of reflections on surfaces in R^3, Proceedings of the Royal Society of Edinburgh, Vol. 147A, (2017), 337-352.
- T. Fukuda, S. Janeczko, Hamiltonian systems on submanifolds, Advanced Studies in Pure Mathematics 78 (2018), 221-249.
- S. Janeczko, T. Nishimura, Anti-orthotomics of frontals and their applications, J. of Math. Analysis and Applications, Vol. 487, (2020), 124019.

Personal web page:

Karolina Kropielnicka
Areas of interest: Computational mathematics, PDEs in quantum mechanics, composition and decomposition methods, geometric numerical integration, structured population models, numerical methodologies is the spaces of measures, highly oscillatory problems.

Selected publications:
- M. Condon, A. Iserles, K. Kropielnicka, P. Singh, Solving the wave equation with multifrequency oscillations, Journal of Computational Dynamics, vol. 6, no 2, pp. 239–249, (2019) doi:10.3934/jcd.2019012.
- W. Auzinger, H. Hofstätter, O. Koch, K. Kropielnicka, P. Singh, Time adaptive Zassenhaus splittings for the Schrödinger equation in the semiclassical regime, Appl. Math. Comput. 362 (2019),
- J. A. Carrillo, P. Gwiazda, K. Kropielnicka, A. Marciniak-Czochra, The Escalator Boxcar Train Method for a System of Aged-structured Equations in the Space of Measures, SIAM J. Numer. Anal. 57 (2019), no. 4, 1842– 1874.
- A. Iserles, K. Kropielnicka, P. Singh, Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials, J. Comput. Phys. 376 (2019), 564-584. 10.1016/ A. Iserles, K. Kropielnicka, P. Singh, Compact schemes for laser–matter interaction in Schrödinger equation based on effective splittings of Magnus expansion, Computer Physics Communications 234, (2019) 195-201,
- A. Iserles, K. Kropielnicka, P. Singh, Magnus-Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential, SIAM J. Numer. Anal. 56 (2018), no. 3, 1547–1569,
- P. Bader, A. Iserles, K. Kropielnicka, P. Singh, Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential, Proc. A., 472 2016 no.2193, 18pp.
- P. Bader, A. Iserles, K. Kropielnicka, P. Singh, Effective approximation for the semiclassical Schrödinger equation, Found. Comp. Maths, 14 2014, no. 4, 689–720.

Personal web page:

Wojciech Kryński
Areas of interest: Geometry of differential equations, control theory, integrable systems.

Selected publications:
- W. Kryński, O. Makhmali, The Cayley cubic and differential equations, J. Geom. Anal. (2020).
- W. Kryński, Dissipative prolongations of the multipeakon solutions to the Camassa-Holm equation, J. Diff. Equations 266(4) (2019) 1832-1850.
- W. Kryński, T. Mettler, GL(2)-structures in dimension four, H-flatness and integrability, Comm. Anal. Geom. 27(8) (2019) 1851-1868.
- W. Kryński, Paraconformal structures, ordinary differential equations and totally geodesic manifolds, J. Geom. Phys. 103 (2016) 1-19.
- M. Dunajski, W. Kryński, Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs, Math. Proc. Camb. Phil. Soc. 157(1) (2014) 139-150.
- B. Jakubczyk, W. Kryński, Vector fields with distributions and invariants of ODE's, J. Geom. Mech. 5(1) (2013) 85-129.

Personal web page:

Jarosław Mederski
Areas of interest: Variational methods and nonlinear partial differential equations involving strongly indefinite elliptic operators and curl-curl problems.

Selected publications:
- J. Mederski, J. Schino, A. Szulkin: Multiple solutions to a nonlinear curl-curl problem in R^3, Arch. Rational Mech. Anal. 236 (2020) 253-288.
- J. Mederski: The Brezis-Nirenberg problem for the curl-curl operator, J. Funct. Anal. 274 (5), (2018), 1345-1380.
- T. Bartsch, J. Mederski: Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium, J. Funct. Anal. 272 (2017), no. 10, 4304-4333.
- J. Mederski: Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations 41 (2016), no. 9, 1426–1440.
- J. Mederski: Ground states of time-harmonic semilinear Maxwell equations in R^3 with vanishing permittivity, Arch. Rational Mech. Anal., 218 (2), (2015), 825-861.
- P. d'Avenia, J. Mederski: Positive ground states for a system of Schrödinger equations with critically growing nonlinearities, Calc. Var. Partial Differential Equations 53 (2015), no. 3-4, 879– 900.
- T. Bartsch, J. Mederski: Ground and Bound State Solutions of Semilinear Time-Harmonic Maxwell Equations in a Bounded Domain, Arch. Rational Mech. Anal. 215 (1), (2015), 283-306.

Personal web page:

Michał Miśkiewicz
Areas of interest: Geometric analysis, Nonlinear PDEs, Regularity theory.

Selected publications:
- M. Miśkiewicz, On Hölder regularity of the singular set of energy minimizing harmonic maps into closed manifolds, Calc. Var. 59, 36 (2020).
- M. Miśkiewicz, Fractional differentiability for solutions of the inhomogeneous p-Laplace system, Proc. Amer. Math. Soc. 146 (2018), 3009-3017.
- M. Miśkiewicz, Discrete Reifenberg-type theorem, Ann. Acad. Sci. Fenn. Math. 43 (2018), 3-19.

Personal web page:

Joanna Rencławowicz
Areas of interest: Partial differential equations, Fluid dynamics, Navier-Stokes equations in bounded domains, Mathematical biology.

Selected publications:
- J. Rencławowicz, W. M. Zajączkowski, The Large Flux Problem to the Navier-Stokes Equations - Global Strong Solutions in Cylindrical Domains, Springer, Birkhauser, Advances in Mathematical Fluid Mechanics, (2019) 1-179.
- J. Rencławowicz, W. M. Zajączkowski, Global nonstationary Navier-Stokes motion with large flux, SIAM J. Math. Analysis, 46 (2014), No. 4, 2581–2613.
- J. Rencławowicz, W. M. Zajączkowski, Existence of global weak solutions for Navier-Stokes equations with large flux, J. Diff. Equations 251 (2011) 688-707.
- M. A. Lewis, J. Rencławowicz, P. van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biology, 68 (2006), 3-23.
- M. A. Lewis, J. Rencławowicz, P. van den Driessche, M. Wonham, A comparison of continuous and discrete time West Nile virus models, Bull. Math. Biology, 68 (2006), 491-509.
- M. A. Lewis, J. Rencławowicz, P. van den Driessche, M. Wonham, Conflicting predictions arise from underlying assumptions in host-vector disease models: A case study in West Nile virus dynamics, Ecology Letters 9 (2006), 706-725.
- H. A. Levine, J. Rencławowicz, Singularity formation in chemotaxis – a conjecture of Nagai, SIAM J. Appl. Math., 65 (2004), 336-360.

Personal web page:

Jakub Siemianowski
Areas of interest: partial differential equations, control theory, viscosity solutions, topological methods in nonlinear analysis, hydrodynamics.

Selected publications:
- T. Cieślak, J. Siemianowski, A. Święch, Viscosity solutions to an initial value problem for a Hamilton--Jacobi equation with a degenerate Hamiltonian occurring in the dynamics of peakons, arXiv:2003.07841.
- W. Kryszewski, J. Siemianowski, Constrained Semilinear Elliptic Systems on R^N, arXiv:2001.07272.
- P. Kalita, G. Łukaszewicz, J. Siemianowski, On relation between attractors for single and multivalued semiflows for a certain class of PDEs, Discrete Contin. Dyn. Syst. B 24(3) (2019)
- P. Kalita, G. Łukaszewicz, J. Siemianowski, Rayleigh-Bénard problem for thermomicropolar fluids, Topol. Methods Nonlinear Anal. 52(2) (2018) 477-514.

Personal web page: Not available

Panayotis Smyrnelis
Areas of interest: Elliptic systems of PDEs, Nonlinear ODEs, Calculus of Variations, and Applications in Physics.

Selected publications:
- N. D. Alikakos, G. Fusco, P. Smyrnelis, Elliptic systems of phase transition type. Progress in Nonlinear Differential Equations and Their Applications, Vol. 91, Springer-Birkhäuser (2018).
- M. G. Clerc, M. Kowalczyk, P. Smyrnelis, Symmetry breaking and restoration in the Ginzburg- Landau model of nematic liquid crystals. Journal of Nonlinear Science 28(3) (2018) 1079-1107.
- P. Bates, G. Fusco, P. Smyrnelis, Multiphase solutions to the vector Allen-Cahn equation: crystalline and other complex symmetric structures. Archive for Rational Mechanics and Analysis 225(2) (2017) 685-715.

Personal web page:

Piotr Suwara
Areas of interest: gauge theory (Floer theories), low-dimensional topology, infinite-dimensional differential topology.

Selected publications:
- Słomka J., Suwara S., Dunkel J., The nature of triad interactions in active turbulence, J. Fluid Mech. 841 (2018),
- Suwara P., Minimal Generating Sets of Directed Oriented Reidemeister Moves, J. Knot Theory Ramifications 26, 1750016 (2017),
- Oszmaniec O., Suwara P., Sawicki A., Geometry and Topology of CC and CQ states, J. Math. Phys. 55, 062204 (2014).

Personal web page:

Aneta Wróblewska-Kamińska
Areas of interest: partial differential equations, existence of solutions, fluid mechanics, non-Newtonian fluids, Navier-Stokes type systems, hydrodynamic models of collective behaviour, singular limits.

Selected papers:
- E. Süli, A. Wróblewska-Kamińska, The incompressible limit of compressible finitely extensible nonlinear bead-spring chain models for dilute polymeric fluids, J. Diff. Equations, 269 (2020), no. 6, 5110-5141.
- J. Carrillo, A. Wróblwska-Kamińska, E. Zatorska, On long-time asymptotics for viscous hydrodynamic models of collective behavior with damping and nonlocal interaction, Mathematical Models and Methods in Applied Sciences 29 (2019), no. 1, 31–63.
- B. Matejczyk, A. Wróblewska-Kamińska, Unsteady flows of heat-conducting non-Newtonian fluids in generalised Orlicz spaces, Nonlinearity 31 (2018), no. 3, 701–727.
- O. Kreml, V. Macha, S. Necasova, A. Wróblewska-Kamińska, Weak solutions to the full Navier-Stokes-Fourier system with slip boundary conditions in time dependent domain, Journal de Mathématiques Pures et Appliquées (9) 109 (2018), 67-92.
- P. Gwiazda, P. Wittbold, A. Zimmermann, A. Wróblewska-Kamińska, Renormalized solutions of nonlinear parabolic problems in generalized Musielak-Orlicz spaces, Nonlinear Analysis: Theory, Methods & Applications. vol.129 (2015) 1-36.

Personal web page:

Wojciech Zajączkowski
Area of interests: Partial differential equations, Fluid Mechanics, Navier-Stokes, Magnetohydrodynamics.

Selected papers:
- E. Zadrzyńska, W.M. Zajączkowski, Stability of two-dimensional heat-conducting incompressible motions in a cylinder, Nonlinear Anal. 125 (2015), 113-127.
- W.M. Zajączkowski, Nonstationary Stokes system in anisotropic Sobolev spaces, Math. Methods Appl. Sc. 38 (2015), no 12, 2466-2478.
- E. Zadrzyńska, W.M. Zajączkowski, Stability of two-dimensional Navier-Stokes motions in the periodic case, J. Math. Anal. Appl. 423 (2015), no. 2, 956-974.
- I. Pawłow, W.M. Zajączkowski, Global regular solutions solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal. 45 (2013), no. 4,1997-2045.
- I. Pawłow, W.M. Zajączkowski, The global solvability of a sixth order Cahn-Hilliard type equation via the Backlund transformation, Commun. Pure Appl. Anal.13(2014), no. 2, 859-880.
- W.M. Zajączkowski, Nonstationary Stokes system in Sobolev-Slobodetski spaces, Math. Anal. 356 (2013), no. 2, 555-587.
- A. Kubica, M. Pokorny, W.M. Zajączkowski, Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations, Math. Methods Appl. Sci. 35 (2012), no. 3, 360-371.
- G. Seregin, W.M. Zajączkowski, A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations, SIAM J. Math. Anal. 39 (2007), no. 2, 669-685.

Personal web page:

Organized Banach Center Simons Semesters:
2016: „CrossFields PDEs”, (E. Feireisl, P. Gwiazda, P. Mucha, A. Świerczewska-Gwiazda),
2017: "Symmetry and Geometric Structures"(M. Eastwood, W. Kryński, P. Nurowski, B. Warhurst),
2018: „Mathematical Biology”, (O. Diekmann, P. Gwiazda, J. Miękisz, B. Perthame, J. Rencławowicz, R. Rudnicki),
2019: „Geometry and analysis in function and mapping theory on Euclidean and metric measure spaces” (T. Adamowicz, N. Shanmugalingam, T. Cieślak ),
Periodic Seminars:
„Partial Differential Equations”, Monday, 4 PM,
„Geometry and Differential Equations”, Wednesday, 10 AM (CET) – online,
„Geometric Function and Mapping Theory”, Thursday, 2 PM,
Working group seminar:
“Variational Methods and PDEs”, 3rd Monday of the month, 12:15.
Planned conferences:
"Recent trends in nonlinear and dispersive equations: equilibria, stability, dynamics" organized by P. Bizoń, J. Jendrej, M. Kowalczyk, J. Mederski, 18.04.2021 - 24.04.2021, Będlewo,
"Topics in variational problems arising from models in physics" organized by M. Clapp, J. Mederski, A. Szulkin, S. Terracini, 06.06.2021 - 11.06.2021, Będlewo,


dr Douglas Blue / adiunkt / e-mail
prof. dr hab. Piotr Koszmider / profesor / e-mail
dr hab. Maciej Malicki / prof. IM PAN / e-mail
dr hab. Grigor Sargsyan / prof. IM PAN / e-mail
dr Christopher Turner / adiunkt / e-mail
dr Kentaro Yamamoto / adiunkt / e-mail

Research of the Section involves a rather wide spectrum of matters which are connected with the foundations of mathematics, such as set theory, model theory, foundations of arithmetic, cathegorical logic and their applications in   analysis, topology, computability and algebra.

Zofia Adamowicz

She is working in foundations of arithmetic. Her main research is in "bounded arithmetic" together with its links to computational complexity. 

Selected papers:

  • An application of a reflection principle, with L. Kołodziejczyk and P. Zbierski,  Fundamenta Mathematicae 180 (2003), 139-159.
  • Well-behaved principles alternative to bounded induction, with. L. Kołodziejczyk, Theoretical Computer Science  322 (2004), 5-16.
  • Partial Collapses of the Σ1 Complexity Hierarchy In Models for fragments of Bounded Arithmetic, with L. Kołodziejczyk,  Annals of Pure and Applied Logic 145 (2007) 91-95.
  • A note on the Σ1 collection scheme and fragments of bounded arithmetic with L. Kołodziejczyk, Mathematical Logic Quarterly 56 (2010), 126-130.
  • Lower bounds for the provability of Herbrand consistency in weak arithmetics, with K. Zdanowski, Fund. Math. vol. 212 no. 3, 2011, s. 191-216.
  • Truth definitions without exponentiation and the Σ1 collection scheme, with L.A.Kołodziejczyk,   J.B.Paris,  Journal of Symbolic Logic 77 (2):649-655.
  • Existentially closed models in the framework of Arithmetic, with A.Cordon-Franco, F.Lara-Martin, The Journal of Symbolic Logic 81 (2016) 774-788 doi: 10.1017/jsl.2015.36.
  • Restricted polynomial induction versus ordinary induction Fund.Math. 242 (2018) 75-92 doi: 10.4064/fm323-10-2017.

Jakub Gismatulin

His area of research includes algebra, group theory (approximations in groups, simple and amenable groups), mathematical logic (model theory) and their applications to algebraic geometry and symbolic dynamics. Apart from that he is interested in databases and some computational aspects of arithmetic of elliptic curves and computing convergence of convolutions of measures.
More information is on

Piotr Koszmider

His research is focused on developing and applications of the methods of combinatorial set theory and logic such as forcing, stepping up, anti-Ramsey results, bookkeeping principles in analysis and topology in particular in Banach spaces, operator algebras, weak and weak* topology.

Selected papers:

  • Piotr Koszmider; A non-diagonalizable pure state. To appear in  Proc. Natl. Acad. Sci. USA.
  • Clayton Suguio Hida, Piotr Koszmider; Large Irredundant Sets in Operator Algebras. Canad. J. Math. 72 (2020), no. 4, 988-1023.
  • Saeed Ghasemi, Piotr Koszmider; An extension of compact operators by compact operators with no nontrivial multipliers, J. Noncommut. Geom. 12 (2018), no. 4, 1503--1529.
  • Piotr Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K), Israel J. Math. 224 (2018), no. 1, 83--103.
  • Piotr Koszmider, Saharon Shelah, Michał Świętek, There is no bound on sizes of indecomposable Banach spaces, Adv. Math. 323 (2018), 745-783.
  • Piotr Koszmider; On constructions with 2-cardinals; Arch. Math. Logic 56 (2017), no. 7-8, 849--876.
  • Antonio Aviles, Piotr Koszmider; A continuous image of a Radon-Nikodym compact space which is not Radon-Nikodym; Duke Math. J. 162, 12 (2013), 2285-2299.

Maciej Malicki

He works on the verge of descriptive set theory, theory of Polish groups and model theory. He is interested in interactions between these approaches, for example, connections between the structures of Polish groups and orbit equivalence relations induced by their actions, or properties of models that give insight into their automorphism groups. Sometimes he also writes about philosophy, academia, literature, and other topics.

Selected papers:

  • A. Kechris, M. Malicki, A. Panagiotopoulos, J. Zielinski, On Polish groups admitting non-essentially countable actions, to appear in Ergodic Theory and Dynamical Systems.
  • M. Doucha, M. Malicki, Generic representations of countable groups, Transactions of the American Mathematical Society 372(2019), 8249–8277.
  • A. Kwiatkowska, M. Malicki, Automorphism groups of countable structures and groups of measurable functions, Israel Journal of Mathematics 230(2019), 335–360.
  • M. Malicki, Consequences of the existence of ample generics and automorphism groups of homogeneous metric structures, Journal of Symbolic Logic 81(2016), 876-886.
  • M. Malicki, Abelian pro-countable groups and countable orbit equivalence relations, Fundamenta Mathematica 233(2016), 83-99.
  • M. Malicki, Generic elements in isometry groups of Polish ultrametric spaces, Israel Journal of Mathematics 206(2015), 127-153.
  • M. Malicki, Matheme and Mathematics. On the main concepts of the philosophy of Alain Badiou”, Logique et Analyse 231(2015), 433-455.
  • W. Just, M. Malicki, Cooperative Boolean systems with generically long attractors I, Journal of Difference Equations and Applications 19(2013), 772-795.

Bartosz Wcisło

His primary research area is metamathematics with the main focus on the study of proof theory and model theory of truth predicates over Peano Arithmetic.  He also has some interest in reverse mathematics, theories of second-order arithmetic, and foundations of set theory.

Selected papers:

  • M. Łełyk, B. Wcisło, Local collection scheme and end-extensions of models of compositional truth, to appear in Annals of Pure and Applied Logic.
  • R. Kossak, B. Wcisło, Disjunctions with stopping condition, to appear in the Bulletin of Symbolic Logic.
  • A. Enayat, M. Łełyk, B. Wcisło, Truth and feasible reducibility, The Journal of Symbolic Logic 85(1), 367–421 (2020).
  • M. Łełyk, B. Wcisło, Notes on bounded induction for the compositional truth predicate, The Review of Symbolic Logic 10(3), 455–480 (2017).
  • M. Łełyk, B. Wcisło, Models of Weak Theories of Truth, Archive for Mathematical Logic 56 (5–6), 453–474 (2017).


prof. dr hab. Yuriy Tomilov
pok. 419 / tel. 22 5228 238


prof. dr hab. Marcin Bownik / prof. IM PAN / e-mail
dr Abhishek Ghosh / adiunkt / e-mail
prof. dr hab. Anna Kamont / profesor / e-mail
dr Manish Kumar / adiunkt / e-mail
dr Stephen Moore / adiunkt / e-mail
prof. dr hab. Adam Nowak / profesor / e-mail
dr Jesús Oliva Maza / adiunkt / e-mail
dr hab. Jan Rozendaal / prof. IM PAN / e-mail
dr Zdenek Silber / adiunkt / e-mail
prof. dr hab. Adam Skalski / profesor / e-mail
prof. dr hab. Piotr Śniady / profesor / e-mail
dr Grzegorz Świderski / adiunkt / e-mail
dr Hua Wang / adiunkt / e-mail
dr Mateusz Wasilewski / adiunkt / e-mail
dr hab. Michał Wojciechowski / prof. IM PAN / e-mail
prof. dr hab. Przemysław Wojtaszczyk / profesor / e-mail
dr hab. Błażej Wróbel / prof. IM PAN / e-mail

O Zakładzie

In the recent years the research activity of members of the Department has covered a wide range of topics concerning functional analysis and its relationships with other fields. Below we present the most important results obtained in recent years.

Applications of interpolation theory to functional analysis. A modern approach by interpolation of Banach spaces is presented in [DMM1] to prove the abstract type Littlewood inequalities for inclusion maps between Banach symmetric sequence spaces. This extends the famous analogues in Lp-spaces due to Littlewood, Orlicz, Bennett and Carl. These results have many different applications, e.g. to eigenvalue distributions of compact operators [DMM2], local theory of Banach spaces and theory of interpolation functors [M], s-numbers in finite-dimensional Schatten classes [DMM3].

Approximation theory. The study of generalized Franklin systems was undertaken and results were presented in the series of papers (see e.g.[GK1]). Non-linear m-term greedy approximation with respect to the Haar system and other wavelet systems was studied. In particular stability of greedy approximation in the space BV was obtained in [BDKPW]. Important results about quasi-greedy bases we obtained in [GK2],[W].

Local theory of Banach spaces. In [MT1] the geometry of random sections and projections of symmetric convex bodies was investigated. Relation between optimal radii of Euclidean balls inscribed in sections and superscribed on projections of symmetric convex bodies was given in [MT2]. A lower bound for Banach-Mazur distances between symmetric polytopes generated by subgaussian vectors was given in [LMOT].

Methods of the theory of locally convex spaces and their applications to classical analysis. Derived functors on locally convex spaces are applied to the problem of parameter dependence of solutions of linear partial differential operators [BD] and to the problem which composition operators on the space of real analytic functions have closed range [DL]. The structure of the corresponding spaces of functions or distributions is analyzed [DV].

Sobolew spaces. In [PW1] the unconditional structure of Sobolev spaces and spaces of functions of bounded variation are studied. Faliure of local unconditional structure of Soblev spaces in L1-norms and spaces of functions with bounded variation are dscussed [PW2]. The bounded approximation property of the space of functons with bounded variation is established in [ACDP]. The relation between singularities of vector measure and constrains on directions of its Fourier transform is investigated in [RW].

Topological algebras. Several papers deal with ideals in F-algebras. In [Z1] it is shown that a unital F-algebra has all left (right) maximal ideals closed if and only if it is a Q-algebra, i.e. the group of its invertible elements is open. In [Z2] it is shown that a unital F-algebra has all one-sided ideals closed if and only if it is both left and right Noetherian. In [Z3] it is constructed an m-convex B0-algebra in which all left but not all right ideals are closed. Other results concern topologically invertible elements and operators on locally convex spaces and their hyperinvariant subspaces.

Handbook of the Geometry of Banach Spaces Members of the Department contributed four survey articles to the Handbook of the Geometry of Banach Spaces describing "state of the art" in presented areas, [HB1], [HB2], [HB3], [HB4].

[ACDP] G. Alberti, M. Csörneyi, A.Pełczyński, D. PreissBV has the Bounded Approximation Property, Journal of Geometric Analysis 15 (2005),1-7.
[BDKPW] P. Bechler, R. Devore, A. Kamont, G. Petrova, P. WojtaszczykGreedy wavelet projections are bounded on BV. Trans. Amer. Math. Soc., 359 (2007), 619-635.
[BD] J. Bonet, P. DomańskiThe splitting of exact sequences of PLS-spaces and smooth depepndence of solutions of linear partial differential equations, Adv. Math., 217 (2008), 561-585.
[DMM1] A. Defant, M. Mastyło, C. MichelsSumming inclusion maps between symmetric sequence spaces, Trans. Amer. Math. Soc., 354 (2002), 4473-4492.
[DMM2] A. Defant, M. Mastyło, C. MichelsEigenvalues estimates for operators on symmetric Banach sequence spaces, Proc. Amer. Math. Soc. 132 (2003), 513-521.
[DMM3] A. Defant, M. Mastyło, C. MichelsSumming norms of identities between unitary ideals, Math. Z. 252 (2006), 863-882.
[DL] P. Domański, M. LangenbruchCoherent analytic sets and composition of real analytic functions, J. reine angew. Math., 582 (2005), 41-59.
[DV] P. Domański, D. VogtThe space of real analytic functions has no basis, Studia Math., 142 (2000), 187-200.
[GK1] G. G. Gevorkyan, A. KamontGeneral Franklin systems as bases in H1[0,1]. Studia Math., 167 (2005), 259-292.
[GK2] G. G. Gevorkyan, A. KamontTwo remarks on quasi-greedy bases in the space L1. (Russian) Izv. Nats. Akad. Nauk Armenii Mat., 40 (2005), no. 1, 5-17.
[HB1] T. Figiel, P. WojtaszczykSpecial bases in function spaces, Handbook of the geometry of Banach spaces, vol I, North Holland, W.B.Johnson and J. Lindenstrauss editors, Amsterdam 2003, 561-590.
[LMOT] R. Latała, P. Mankiewicz, K. Oleszkiewicz, N. Tomczak-Jaegermann, Banach-Mazur distances and projections on random subgaussian polytopes, Discrete Comput. Geom., 38 (2007), 29-50.
[HB2] P. Mankiewicz, N. Tomczak-JaegermannQuotients of finite-dimensional Banach spaces; random phenomena, Handbook of the geometry of Banach spaces, vol II, North Holland, W.B.Johnson and J. Lindenstrauss editors, Amsterdam 2003, 1201-1246.
[MT1] P. Mankiewicz and N. Tomczak-JaegermannGeometry of Families of Random Projections of symmetric convex bodies, Geom. Funct. Anal., 11 (2001), 1282-1326.
[MT2] P. Mankiewicz, N. Tomczak-JaegermannLow Dimensional sections versus projections of convex bodies, Israel J. of Math., 153 (2006), 45-60.
[M] M. MastyłoInterpolation methods of means and orbits, Studia Math. 17 (2005), 153-175.
[HB3] A. Pełczyński, M. WojciechowskiSobolev Spaces, ibidem, 1361-1425.
[HB4] P. WojtaszczykSpaces of analytic functions with integral norm, ibidem, 1671-1702.
[PW1] A. Pełczyński, M. WojciechowskiSpaces in several variables in L1 norm are non isomorphic to Banach lattices, Ark. Mat., 40 (2002) 363-382.
[PW2] A. Pełczyński, M. WojciechowskiSpaces of functions with bounded variation and sobolev spaces without local unconditional structure, J. reine angew. Math., 558 (2003), 109-157.
[RW] M. Roginskaya, M. WojciechowskiSingularity of vector valued measures in terms of Fourier transform, J. Fourier Analysis and Applications, 12, (2006), 213 - 223.
[W] P. WojtaszczykGreedy algorithm for general biorthogonal systems. J. Approx. Theory 107 (2000), 293-314.
[Z1] W. ŻelazkoWhen a unital F-algebra has all left (right) ideals closed, Studia Math., 175 (2006), 279-284.
[Z2] W. ŻelazkoA characterization of F-algebras with all one-sided ideals closed, Studia Math., 168 (2005), 135-145.
[Z3] W. ŻelazkoAn m-convex B0-algebra with all left but not all right ideals closed, Coll. Math., 194 (2006), 317-324.

O Zakładzie

The Katowice Branch of the Institute of Mathematics was founded in 1966. Jan Mikusiński was the head of the Branch until his retirement in 1984. From 1985 to 1994 the Branch was headed by Piotr Antosik, and then by Ryszard Rudnicki. The following mathematicians worked in the Branch: B. Aniszczyk, P. Antosik, J. Burzyk, T. Dłotko, C. Ferens, P. Hallala, A. Kamiński, W. Kierat, C. Kliś, S. Krasińska, M. Kuczma, A. Lasota, S. Lewandowska, Z. Lipecki, K. Łoskot, J. Mikusiński, P. Mikusiński, J. Mioduszewski, J. Pochciał, R. Rudnicki, Z. Sadlok, K. Skórnik, W. Smajdor, T. Szarek, Z. Tyc, J. Uryga and P. Uss.

The main line of research has been closely related to Prof. Mikusiński's interests. The dominating topics of investigations are sequential theory of distributions, Mikusiński operational calculus and convergence theory. The main results obtained in this area are: introduction of regular and irregular operations on distributions and local derivatives, functional description of the convergence in the field of Mikusiński operators, axiomatic theory of convergence, diagonal theorems and Paley-Wiener type theorems for regular operators. Moreover, several results concerning applications of operational calculus to differential equations, theory of controllability and special functions have been obtained.

Numerous results obtained by Mikusiński's team are presented in five books written by Mikusiński, Antosik, Sikorski and Boehme. Mikusiński's books have been translated into various languages, for example "Operational Calculus'' was published in Polish, English, Russian, German, Hungarian and Japanese.

In the early nineties a group of scientists connected with Prof. Andrzej Lasota began to work in the Branch. Their main research interests are in probability theory, partial differential equations and biomathematics. The main results obtained are: sufficient conditions for asymptotic stability of Markov operators and semigroups, asymptotic behaviour of solutions of generalized Fokker-Planck equations, constructions of semifractals and global properties of nonlinear models of population dynamics.

Selected publications


  1. J. Mikusiński, Operational Calculus, Pergamon Press and PWN, 1967; 1983.
  2. J. Mikusiński and T.K. Boehme, Operational Calculus, Volume II, PWN and Pergamon Press, 1987.
  3. P. Antosik, J. Mikusiński and R. Sikorski, Theory of Distributions, The Sequential Approach, Elsevier-PWN, 1973 (Russian edition 1976).
  4. J. Mikusiński, The Bochner Integral, Birkhäuser, 1987; Academic Press, 1978.
  5. P. Antosik and C. Swartz, Matrix Methods in Analysis, Springer, 1985.


  1. P. Antosik, On the Mikusiński diagonal theorem, Bull. Acad. Polon. Sci. 20 (1972), 373-377.
  2. J. Burzyk, On convergence in the Mikusiński operational calculus, Studia Math. 75 (1983), 313-333.
  3. J. Burzyk, A Paley-Wiener type theorem for regular operators, Studia Math. 93 (1989), 187-200.
  4. H. Gacki, T. Szarek and S. Wędrychowicz, On existence and stability of solutions of stochastic integral equations with applications to control system, Indian J. Pure Appl. Math. 29 (1998), 175-189.
  5. A. Kamiński, On the Rényi theory of conditional probabilities, Studia Math. 79 (1984), 151-191.
  6. A. Kamiński, D. Kova?ević and S. Pilipović, The equivalence of various definitions of the convolution of ultradistributions, Trudy Mat. Inst. Steklov. 203 (1994) 307-322.
  7. C. Kliś, An example of a non-complete normed (K) space, Bull. Acad. Polon. Sci. 26 (1978), 415-420.
  8. A. Lasota and J. Myjak, Semifractals, Bull. Polish Acad. Sci. Math. 44 (1996), 5-21.
  9. A. Lasota and J. A. Yorke, When the long time behavior is independent of the initial density, SIAM J. Math. Anal. 27 (1996), 221-240.
  10. K. Łoskot and R. Rudnicki, Limit theorems for stochastically perturbed dynamical systems, J. Appl. Probab. 32 (1995), 459-469.
  11. J. Łuczka and R. Rudnicki, Randomly flashing diffusion: asymptotic properties, J. Statist. Phys. 83 (1996), 1149-1164.
  12. M. C. Mackey and R. Rudnicki, Asymptotic similarity and Malthusian growth in autonomous and nonautonomous populations, J. Math. Anal. Appl. 187 (1994), 548-566.
  13. M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol. 33 (1994), 89-109.
  14. J. Mikusiński, Sequential theory of the convolution of distributions, Studia Math. 29 (1968), 151-160.
  15. J. Mikusiński, A theorem on vector matrices and its applications in measure theory and functional analysis, Bull. Acad. Polon. Sci. 18 (1970), 151-155.
  16. J. Mikusiński, On full derivatives and on the integral substitution formula, Accad. Naz. Lincei Probl. Atti Sci. Cult. 217 (1975), 377-390.
  17. J. Mikusiński and P. Mikusiński, Quotients de suites et leurs applications dans l'analyse fonctionnelle, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 463-464.
  18. K. Pichór and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl. 215 (1997), 56-74.
  19. J. Pochciał, Sequential characterizations of metrizability, Czech. Math. J. 41 (1991), 203-215.
  20. R. Rudnicki, Asymptotical stability in L1 of parabolic equations, J. Differential Equations 102 (1993), 391-401.
  21. R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262.
  22. K. Skórnik, On fractional integrals and derivatives of a class of generalized functions, Soviet Math. Dokl. 22 (1980), 541-543.
  23. K. Skórnik and J. Wloka, m-reduction of ordinary differential equations, Colloq. Math. 78 (1998), 195-212.
prof. dr hab. Janusz Grabowski
pok. 320 / tel. 22 5228 242


prof. dr hab. Bronisław Jakubczyk / profesor / e-mail
prof. dr hab. Andrzej Królak / profesor / e-mail
dr hab. Wojciech Kryński / prof. IM PAN / e-mail
dr Rouzbeh Mohseni / adiunkt / e-mail
  1. Mathematical aspects of data analysis from gravitational wave detectors (Andrzej Królak).

Main activity are applications of methods of statistics and the theory of stochastic processes to the problem of detection of gravitational waves in the noise of the detector.

Detection of gravitational waves that was achieved by LIGO detectors in the year 2015 provided confirmation of Einstein’s theory of gravity and opened a new window on the Universe.

We specialize in searches for gravitational wave signals from rotating neutron stars. This is a very challenging problem as it requires extraction from the noise of the detector extremely weak signals and searches over extremely large parameter space.

We have developed a number of theoretical algorithms and tools to performed such searches that are summarized in publication [1] and [2]. Using these tools we developed a number of computer codes to search for such signals. The codes are used for the analysis of LIGO and Virgo gravitational wave detector data and resulted in several publications of the LIGO - Virgo consortium.

[1] P. Jaranowski, A. Krolak, and B. F. Schutz, Data analysis of gravitational-wave signals from pulsars. I. The signal and its detection, Phys. Rev. D58 (1998) 063001.

[2] Analysis of Gravitational-Wave Data,  P. Jaranowski and A. Krolak, Cambridge University Press, Cambridge 2009.

  1. Principal  structures of geometry and physics (Janusz Grabowski, Zohreh Ravanpak)

We are dealing with canonical algebraic and geometric structures that play fundamental role in description of various systems in physics are studied in the language of differential geometry and super-geometry.

Among them are Poisson and Jacobi structures (e.g. symplectic and contact), Lie and Courant algebroids, Dirac structures, generalized (e.g. complex) geometries, Nijenhuis tensors and the corresponding contractions, principles of variational calculus – all this with applications to Theoretical Mechanics, especially to frame-independent description of mechanical systems, foundations of Quantum Mechanics and the geometry of quantum states, quantum information and description of entanglement. Recently we work also on the geometry of nonassociative structures (loops, etc).

Recent publications:

  1. Grabowska, Katarzyna; Grabowski, Janusz Solvable Lie algebras of vector fields and a Lie's conjecture. SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 065, 14 pp.
  2. Grabowska, Katarzyna; Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe Lie groupoids in information geometry. J. Phys. A 52 (2019), no. 50, 505202, 22 pp.
  3. Cariñena, J. F.; Grabowski, J.; de Lucas, J. Quasi-Lie schemes for PDEs. Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 7, 1950096, 36 pp.
  4. Bruce, Andrew James; Grabowski, Janusz, Pre-Courant algebroids. J. Geom. Phys. 142 (2019), 254–273.
  5. Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana, Geometry of quantum dynamics in infinite-dimensional Hilbert space. J. Phys. A 51 (2018), no. 16, 165301, 35 pp.
  6. Grabowska, Katarzyna; Grabowski, Janusz, n-tuple principal bundles. Int. J. Geom. Methods Mod. Phys. 15 (2018), no. 12, 1850211, 18 pp.
  7. Bruce, Andrew James; Grabowski, Janusz; Vitagliano, Luca, Representations up to homotopy from weighted Lie algebroids. J. Lie Theory 28 (2018), no. 3, 715–737.
  8. Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz, On the concept of a filtered bundle. Int. J. Geom. Methods Mod. Phys. 15 (2018), no. 1, 1850013, 34 pp.
  9. Grabowski, Janusz; Jóźwikowski, Michał; Rotkiewicz, Mikołaj, Duality for graded manifolds. Rep. Math. Phys. 80 (2017), no. 1, 115–142.
  10. Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz Remarks on contact and Jacobi geometry. SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 059, 22 pp.

Sprawozdania z działalności naukowej


prof. dr hab. Tomasz Rychlik / profesor / e-mail

O Zakładzie

The Section of Mathematical Statistics was established on April 1, 2004, as a unification of Section of Mathematical Statistics and Its Applications and Section of Applied Probability. For brief history of the two last mentioned Sections see below.

The following researchers have been members of the Section of Mathematical Statistics: Tadeusz Bednarski, Przemysław Biecek, Bogdan Ćmiel, Katarzyna Danielak, Tadeusz Inglot, Paweł Kozyra, Teresa Ledwina, Szymon Majewski, Błażej Miasojedow, Patryk Miziuła, Ryszarda Rempała, Tomasz Rychlik, Grzegorz Wyłupek and Ryszard Zieliński. The main scientific interests have been focused on the following topics:

  • asymptotic optimality and efficiency of tests,
  • characterizations by means of ordered statistical data,
  • data driven tests,
  • general methodology for robust estimation and testing,
  • Markov chain Monte Carlo,
  • methods of model selection,
  • multiple testing procedures,
  • optimal bounds on statistical functionals,
  • optimal nonparametric quantile estimation,
  • sequential decision problems for controlling production, distribution and inventory processes.

Selected publications:

  • T. Bednarski (2004). Robust estimation in the generalized Poisson model, Statistics 38, 149-159.
  • T. Inglot, T. Ledwina (2004). On consistent minimax distinguishability and intermediate efficiency of Cramér-von Mises test, J. Statist. Plann. Inf. 124, 453-474.
  • K. Danielak (2005). Distribution-free bounds for expectations of increments of records, J. Statist. Plann. Inf. 133, 239-247.
  • T. Inglot, T. Ledwina (2006). Data driven score tests for a homoscedastic linear regression model: asymptotic results, Probab. Math. Statist. 26, 41-61.
  • J. Navarro, T. Rychlik (2007). Reliability and expectation bounds for coherent systems with exchangeable components, J. Multivar. Anal. 98, 102-113.
  • W. Niemiro, R. Zieliński (2007). Uniform asymptotic normality for the Bernoulli scheme, Appl. Math. 34, 215-221.
  • M. Bogdan, F. Frommlet, P. Biecek, R. Cheng, J.K. Ghosh, R.W. Doerge (2008). Extending the modified Bayesian Information Criterion (mBIC) to dense markers and multiple interval mapping, Biometrics 64, 1162-1169.
  • P. Jaworski, T. Rychlik (2008). On distributions of order statistics for absolutely continuous copulas with applications to reliability problems, Kybernetika 44, 757-776.
  • T. Ledwina, J. Mielniczuk (2010). Variance function estimation via model selection, Appl. Math. 37, 387-411.
  • J. Navarro, T. Rychlik (2010). Comparisons and bounds for expected lifetimes of reliability systems, Europ. J. Operational Res. 207, 309-317.
  • G. Wyłupek (2010). Data driven k-sample tests, Technometrics 52, 107-123.
  • K. Jasiński, T. Rychlik (2012). Bounds on dispersion of order ststistics based on dependent symmetrically distributed random variables, J. Statist. Plann. Inf. 142, 2421-2429.
  • T. Ledwina, G. Wyłupek (2012). Two-sample test against one-sided alternatives, Scand. J. Statist. 39, 358-381.
  • P. Miziuła, T. Rychlik (2014). Sharp bounds for lifetime variances of reliability systems with exchangeable components, IEEE Trans. Reliab. 63, 850-857.
  • T. Ledwina, G. Wyłupek (2014). Validation of positive quadrant dependence, Insurance Math. Econom. 56, 38-47.
  • T. Ledwina (2015). Visualizing association structure in bivariate copulas using new dependence function, in: Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics & Statistics 122, A. Steland et al. (eds), 19-27.
  • P. Miziuła, T. Rychlik (2015). Extreme dispersions of semicoherent and mixed system lifetimes, J. Appl. Probab. 52, 117-128.
  • A. Goroncy, T. Rychlik (2016). Evaluation of expectations of order statistics and spacings based on IFR distributions, Metrika 79, 635-657.
  • K. Jasiński, T. Rychlik (2016). Inequalities for variances of order statistics originating from urn models, J. Appl. Prob. 53, 162-173.
  • B. Ćmiel, T. Ledwina (2017). Validation of positive expectation dependence, ESAIM: Probability and Statistics 2017, 536-561.
  • B. Miasojedow, W. Niemiro (2017). Geometric ergodicity of Rao and Teh's algorithm for Markov jump processes and CTBNs, Electron. J. Statist. 11, 4629-4648.
  • B. Ćmiel, Z. Szkutnik, J. Wojdyła (2018). Asymptotic confidence bands in the Spektor-Lord-Willis problem via kernel estimation of intensity derivative, Electron. J. Statist. 12, 194-223.
  • B. Miasojedow, W. Rejchel (2018). Sparse estimation in Ising model via penalized Monte Carlo methods, J. Machine Learn. Res. 19, 1-26.


  • Asymptotic Statistics (T. Inglot, T. Ledwina; Wrocław, 2004 - June 2016),
  • Mathematical Statistics and other Probabilistic Applications (M. Męczarski, J. Mielniczuk - until June 2010, P. Jaworski - since October 2010, T. Rychlik; Warszawa),
  • Mathematical Statistics (W. Niemiro, T. Rychlik; Toruń, 2008-2014),
  • Statistics in Medicine (P. Biecek; Wrocław, 2007-2008).

The Section of Mathematical Statistics and Its Applications

The Section of Mathematical Statistics and Its Applications stemmed from the Department of Applied Mathematics of the State Institute of Mathematics, which was established in November 20, 1948. In 1949 the Department consisted of six sections. Two of them: the General Section of Applications, headed by Hugo Steinhaus, and the Section of Technical Applications, directed by Jan Mikusiński, were located in Wrocław. These two sections formed later on the Section of Applications to Biology, Economics and Technology, directed by Hugo Steinhaus until his retirement in 1960. Julian Perkal (1960-1965) and Stefan Zubrzycki (1965-1968) were later directors. The Section has played a very important role in the Wrocław scientific community, in particular through many collaborations with various professionals and educational work in applied probability and statistics. The journal Zastosowania Matematyki (the subtitle Applicationes Mathematicae added in 1965), founded by Hugo Steinhaus in 1953, with help of Jan Oderfeld, was a significant platform for the activity of the group. This activity was further supported by Julian Perkal, who founded the Listy Biometryczne journal in 1964. The journal is currently published as Biometrical Letters.

From 1968 to 1991 the Section was headed by Witold Klonecki and was renamed to the Section of Mathematical Statistics and Its Applications in 1973. At that time, the main activity was focused on PhD studies in modern statistical methodology, initially with the kind aid of colleagues from Wrocław University. Members of the group participated very actively in the organization of a series of conferences, beginning with one in Wisła in 1973. Many of these conferences were international. Symposium to honour Jerzy Neyman (1974), the European Meeting of Statisticians (1981) and Banach Center Semester on Nonparametric and Robust Methods (1984) are prominent examples. Witold Klonecki was also one of the founders of the Probability and Mathematical Statistics journal (1980).

Since 1991 until 2004 the Section was headed by Tadeusz Bednarski. Apart from research in mathematical statistics, much attention was focused on direct applied work.

Selected publications:

  1. K. Florek, J. Łukaszewicz, J. Perkal, H. Steinhaus, S. Zubrzycki (1951). Sur la liaison et la division des points d'un ensemble fini, Colloq. Math. 2, 282-285.
  2. H. Steinhaus (1953/1954). On establishing paternity [in Polish], Zastosow. Mat. I, 67-82.
  3. A. Zięba (1953/1954). Elementary theory of pursuit [in Polish], Zastosow. Mat. I, 273-298.
  4. S. Drobot, M. Warmus (1954). Dimensional analysis in sampling inspection of merchandise, Dissertationes Math. [Rozprawy Mat.] V.
  5. S. Gładysz, A. Rybarski (1954/1956). On modelling three-dimensional fields by a plane field of current [in Polish], Zastosow. Mat. II, 150-160.
  6. S. Zubrzycki (1954/1956). On the optimal method of water meter acceptance [in Polish], Zastosow. Mat. II, 199-209.
  7. A. Huskowska (1954/1956). On the accuracy of some natural science measurements, [in Polish], Zastosow. Mat. II, 426-430.
  8. J. Battek, J. Perkal (1956/1958). Quality and shape of forest stands [in Polish], Zastosow. Mat. III, 285-306.
  9. J. Łukaszewicz, M. Warmus (1956). Numerical and Graphical Methods [in Polish], PWN, Warszawa.
  10. S. Paszkowski i M. Warmus (1956). On some mathematical method in anthropology [in Polish], Przegląd Antropologiczny XXII, 627-650.
  11. H. Steinhaus (1957). The problem of estimation, Ann. Math. Statist. 28, 633-648.
  12. S. Zubrzycki (1957). On estimating gangue parameters [in Polish], Zastosow. Mat. III, 105-153.
  13. E. Marczewski, H. Steinhaus (1958/1959). On the systematic distance of biotopes, [in Polish], Zastosow. Mat. IV, 195-203.
  14. H. Steinhaus, S. Trybuła (1958/1959). Measurement by successive comparison [in Polish], Zastosow. Mat. IV, 204-212.
  15. H. Steinhaus, K. Urbanik (1959). Poissonsche Folgen (Leon Lichtenstein zum Gedáchtnis), Math. Zeitsch. 72, 127-145.
  16. T. Dalenius, J. Hájek, S. Zubrzycki (1961). On plane sampling and related geometrical problems, in : Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1, 125-130.
  17. S. Trybuła (1961). On the paradox of three random variables, Zastosow. Mat. V, 321-332.
  18. A. Bartkowiakowa, B. Gleichgewicht (1962). On the syllable characteristic of the Polish language [in Polish], Zastosow. Mat. VI, 309-319.
  19. A. Krzywicki, A. Rybarski (1962). On a linearization of an equation of an elastic rod, Zastosow. Mat. VI, 321-332.
  20. J. Perkal (1962). A design for a genetic test [in Polish], Zastosow. Mat. VI, 257-285.
  21. H. Steinhaus (1963). Probability, credibility, possibility, Zastosow. Mat. VI, 341-361.
  22. L. Zubrzycka (1963). On the adaptation of the typewriter keyboard to the structure of the language [in Polish], Zastosow. Mat. VI, 419-439.
  23. K. Florek (1964). On a certain method of graphical integration and graphical harmonic analysis, Zastosow. Mat. VII, 353-370.
  24. B. Kopociński, L. Zubrzycka (1964). Remark on division of systems of features into harmonized subsystems [in Polish], Zastosow. Mat. VII, 317-321.
  25. S. Zubrzycki (1966). Explicit formulas for minimax admissible estimators in some cases of restrictions imposed on the parameter, Zastosow. Mat. IX, 31-52.
  26. B. Bednarek-Kozek (1973). On estimation in the multidimensional Gaussian model, Zastosow. Mat. XIII, 511-520.
  27. H. Drygas, J. Srzednicka (1976). A new result on Hsu's model on regression analysis, Bull. Acad. Polon. Sci., Sér. Sci. Math. Phys. Astronom. 24, 1133-1136.
  28. S. Gnot (1976). The mean efficiency of block designs, Math. Operationsforsch. Statist. 7, 75-84.
  29. W. Klonecki (1977). Optimal C($\alpha$) tests for homogeneity, in : Proceedings of the Symposium to honour Jerzy Neyman (Warsaw 1974), PWN, 161-175.
  30. A.S. Kozek (1977). Efficiency and Cramér-Rao type inequalities for convex loss functions, J. Multivariate Anal. 7, 89-106.
  31. M. Musiela (1977). Sequential estimation of parameters of a stochastic differential equation, Math. Operationsforsch. Statist. Ser. Statist. 8, 483-498.
  32. T. Ledwina (1978). Admissible tests for exponential families with finite support, Math. Operationsforsch. Statist. Ser. Statist. 9, 105-118.
  33. R. Zmyślony (1980). A characterization of best unbiased estimators in the general linear model, in : Mathematical Statistics and Probability Theory (Proc. Sixth International Conf. Wisła 1978), Lecture Notes in Statist. 2, Springer-Verlag, 365-378.
  34. W. Wawrzyniak (1981). A characterization of minimum variance unbiased estimators in the general linear model with restrictions on parameter space. Math. Operationsforsch. Statist. Ser. Statist. 12, 456-477.
  35. T. Bednarski (1982). Binary experiments, minimax tests and 2-alternating capacities, Ann. Statist. 10, 226-232.
  36. A.S. Kozek (1982). Towards a calculus for admisibility, Ann. Statist. 10, 825-837.
  37. S. Gnot, J. Kleffe, R. Zmyślony (1985). Nonnegativity of admissible invariant quadratic estimates in mixed linear models with two variance components, J. Statist. Plann. Inference 12, 249-258.
  38. J. Zabrzeski, R. Zmyślony (1987). Experimental description of the rate of platinum and rodium losses in the process of ammonia oxidation, Appl. Catalisis 35, 13-22.
  39. R.H. Farrel, W. Klonecki, S. Zontek (1989). All admissible linear estimators of the vector of gamma scale parameters with application to random effects models, Ann. Statist. 17, 268-281.
  40. W. Klonecki, S. Zontek (1992). Admissible estimators of variance components obtained via submodels, Ann. Statist. 20, 1454-1467.
  41. T. Bednarski (1993). Robust estimation in the Cox regression model, Scand. J. Statist. 20, 213-225.
  42. T. Bednarski, S. Zontek (1996). Robust estimation of parameters in mixed unbalanced models, Ann. Statist. 24, 1493-1510.
  43. K. Drosik, A. Michalski, S. Sadowski, A. Tukiendorf, R. Zmyślony (1998). Neoplasmatic Disease Incidence in Opole Province, Wydawnictwo Uniw. Opolskiego.
  44. T. Inglot, W.C.M. Kallenberg, T. Ledwina (1998). Vanishing shortcoming of data driven Neyman's tests, in : Asymptotic Methods in Probability and Statistics, A Volume in Honour of Miklós Csörgő, North-Holland, 811-829.
  45. T. Bednarski, W. Florczak (1999). On a local uniform bootstrap validity, Statist. Neerl. 53, 111-121.
  46. W.C.M. Kallenberg, T. Ledwina (1999). Data driven rank tests for independence, J. Amer. Statist. Assoc. 94, 285-301.
  47. A. Janic-Wróblewska, T. Ledwina (2000). Data driven rank test for two-sample problem. Scand. J. Statist. 27, 281-297.
  48. T. Inglot, T. Ledwina (2001). Intermediate approach to comparison of some goodness-of-fit tests, Ann. Inst. Statist. Math. 53, 810-834.
  49. G.R. Ducharme, T. Ledwina (2003). Efficient and adaptive nonparametric test for the two-sample problem, Ann. Statist. 31, 2036-2058.
  50. T. Inglot, W.C.M. Kallenberg (2003). Moderate deviations of minimum contrast estimators under contamination, Ann. Statist. 31, 852-879.

Section of Applied Probability

The Section of Applied Probability originated in a long process rooted in the Department of Applied Mathematics of the State Mathematical Institute, founded in 1948. Two Warsaw's sections of this department were forerunners of it. Namely, the Section of Statistical Quality Control and the Actuarial Section. In accordance with the evolving interests of the members, the Section of Statistical Quality Control was renamed to the Industrial Applications Section in 1962. In the period from 1952 to 1970 these sections were directed by Jan Oderfeld, with short break in 1959 when Czesław Rajski was in charge of it. At that time, the research was mainly focused on statistical quality control, operations research and reliability theory. The Actuarial Section evolved into the Section of Mathematical Statistics. In 1951, Oskar Lange was put in charge of the section and he did it until 1958. In 1958-1960 Marek Fisz was the leader of it while later on the section was headed by Wiesław Sadowski. Interests of the group were focused on statistics, decision making and econometry.

These two evolving groups were the predecessors the Applied Probability Section, formally founded in 1972.

The section was headed by Robert Bartoszyński, Ryszard Zieliński and Tomasz Rychlik in the periods 1972-1985, 1985-2002 and 2002-2004, respectively. In the early seventies, the scientific interests of the group switched to probabilistic modelling (mostly, but not only, of biological phenomena), controlled Markov chains, stochastic approximation and random search. In recent years, various issues of mathematical statistics, including robust statistics, fixed precision estimation and moment bounds have become major focuses of the section's research.

The section was active in the organization of courses in applied mathematics, enhancing education in a wide spectrum of applied probability. Also, starting from 1971, Eugeniusz Fidelis annually organized the very popular National Conferences on Applications of Mathematics. Members of the group organized many international conferences in statistics, including Banach Center Semesters on Mathematical Statistics (1976) and Sequential Methods in Statistics (1981), among others.

Selected publications:

  • J. Oderfeld (1951). On the dual aspects of sampling plans. Colloq. Math. 2, 89-97.
  • M. Fisz (1954). Probability Theory and Mathematical Statistics (first edition; in Polish), PWN.
  • T. Czechowski, W. Sadowski, W. Zasępa (1954/1956). On determining the safety factor [in Polish], Zastosow. Mat. 2, 190-198.
  • W. Sadowski (1954/1956). On a non-parametric test of comparing dispersions [in Polish], Zastosow. Mat., 2, 161-171.
  • C. Rajski (1954/1956). On the verification of hypotheses concerning two populations consisting of items marked by attributes [in Polish], Zastosow. Mat., 2, 179-189.
  • M. Fisz, K. Urbanik (1956). Analytical characterization of the composed non-homogeneous Poisson process, Stud. Math. 15, 328-336.
  • M. Fisz (1958). A limit theorem for empirical distribution functions, Stud. Math. 17, 71-77.
  • O. Lange (1959). Introduction to Econometrics (first edition; in Polish), PWN.
  • J. Łukaszewicz, Sadowski, W. (1960/1961). On comparing several populations with a control population . Zastosow. Mat. 5, 309-320.
  • R. Bartoszyński (1961). A characterization of the weak convergence of measures. Ann. Math. Statist. 32, 561-576.
  • J. Oderfeld, E. Pleszczyńska (1961). A linear estimate of the mean deviation in normal population [in Polish], Zastosow. Mat. VI, 111-117.
  • E. Fidelis, J. Oderfeld (1962). Two-step control taking into account the measurement errors [in Polish], Zastosow. Mat. VI, 249-256.
  • W. Rudzki (1962). Estimation of mean properties of shapeless products [in Polish], Zastosow. Mat. VI, 235-248.
  • R. Bartoszyński (1967). Branching processes and the theory of epidemics, Proc. Fifth Berkeley Symp. on Math. Statist. Probab. IV, 615-618.
  • E. Pleszczyńska (1973). Trend estimation problems in time-series analysis. Dissertationes Math. (Rozprawy Mat.) 104.
  • R. Zieliński (1973). A new class of estimators with an application to statistical quality control. Zastosow. Mat. XIII, 279-300.
  • R. Bartoszyński (1974). On a metric structure derived from subjective judgements: scaling under perfect and imperfect discrimination, Ecomometrica 42, 55-71.
  • R. Bartoszyński (1975). On risk of rabies, Math. Biosci. 24, 357-377.
  • R. Zieliński (1977). Global stochastic approximation. Dissertationes Math. (Rozprawy Mat.) 142.
  • R. Bartoszyński, W.J. Bühler (1978). On survival in hostile environment, Math. Biosci. 38, 293-301.
  • R. Bartoszyński, B.W. Brown, C.M. McBridge, J.R. Thompson (1981). Some nonparametric techniques for estimating the intensity function of a cancer related to nonstationary Poisson process. Ann. Statist. 9, 150-160.
  • R. Zieliński (1983). Robust statistical procedures: a general approach, in: ``Stability Problems for Stochastic Models'' (V.V. Kalashnikov and V.M. Zolotarev, eds.), Lecture Notes in Mathematics 982, Springer-Verlag, Berlin, 283-295.
  • B. Gołdys, M. Męczarski, R. Zieliński (1986). An asymptotic fixed-precision confidence interval for the minimum of a quadratic regression function. Probab. Math. Statist. 7, 7-11.
  • J. Koronacki, W. Wertz (1988). A global stopping rule for recursive density estimators. J. Statist. Plann. Inference 20, 23-39.
  • J. Koronacki (1989). Stochastic Approximation. Optimization Methods under Random Conditions [in Polish]. WNT, Warsaw.
  • B. Gołdys (1990). Regularity properties of solutions to stochastic evolution equations, Colloq. Math. 58, 327-338.
  • R. Rempała (1991). Forecast horizon in a dynamic family of one-dimensional control problems, Dissertationes Math. (Rozprawy Mat.) 315.
  • R. Zieliński (1991). Fixed precision estimation in the Blum-Rosenblatt time series. Amer. J. Management Sci. 11, 233-239.
  • T. Rychlik (1993). Bounds for expectation of L-estimates for dependent samples, Statistics 24, 1-7.
  • L. Gajek, D. Zagrodny (1995). Geometric mean value theorems for the Dini derivative. J. Math. Anal. Appl. 191, 56-76.
  • W. Niemiro (1995). Estimation of nuisance parameters for inference based on least absolute deviations. Zastosow. Mat. 22, 515-529.
  • W. Niemiro, P. Pokarowski (1995). Tail events of some nonhomogeneous Markov chains, Ann. Appl. Probab. 5, 261-293.
  • L. Gajek, T. Rychlik (1996). Projection method for moment bounds on order statistics from restricted families. I. Dependent case. J. Multivar. Anal. 57, 156-174.
  • L. Gajek, T. Rychlik (1998). Projection method for moment bounds on order statistics from restricted families. II. Independent case. J. Multivar. Anal. 64, 156-182.
  • R. Zieliński (1998). Uniform strong consistency of sample quantiles. Statist. Probab. Lett. 37, 115-119.
  • T. Rychlik (2001). Projecting Statistical Functionals. Lecture Notes in Statistics 160, Springer-Verlag, New York.
  • S. Bylka, R. Rempała (2003). Selected Problems in the Mathematical Inventory Theory [in Polish], Akademicka Oficyna Wydawnicza Exit, Warsaw.


dr Daniel Vargas-Montoya / adiunkt / e-mail
dr Błażej Żmija / adiunkt / e-mail

O Zakładzie

Research during the last few years concerned different branches of number theory as well as fields and polynomials, which will be reviewed in order adopted by Mathematical Reviewers.

In elementary number theory a lower estimate has been proved under certain conditions in [9] for the number of solutions of a linear homogeneous congruence in a multidimensional box. The same, best possible, estimate under different conditions is in the course of publications.

A problem on diophantine equations over rational integers has been solved in [1], binary forms over an arbitrary field have been considered in [7] and forms in many variables in [14]. An almost explicit construction of a point on an elliptic curve over a finite field has been given in [17].

A problem on the length (a kind of a height) of polynomials with real coefficients, related to diophantine approximation has been studied in [8] and [12], a similar study of polynomials with complex coefficients is in course of publication. Paper [6] studies a problem in geometry of numbers.

Elementary analytic number theory is represented by [16] and a more advanced on by [5]. [15] concerns elementary algebraic number theory [2] K-theory and [3] finite fields.

In field theory and polynomials papers [3] and [11] are concerned with localization of zeros of polynomials in one variable, papers [10] and [11] with reducibility of symmetric polynomials.

The following topics have been studied in the period 1999--2008:

  1. Representation of integer vectors as a linear combination of shorter integer vectors (I. Aliev, A. Schinzel)
  2. The Milnor group K2F (J. Browkin)
  3. Distribution of primitive roots (A. Paszkiewicz, A. Schinzel)
  4. Pseudoprimes and their generalizations (A. Rotkiewicz, A. Schinzel)
  5. Reducibility of polynomials (A. Schinzel)
  6. The number of non-zero coefficients of the greatest common divisor of two polynomials with given numbers of non-zero coefficients (A. Schinzel)
  7. The Mahler measure and other measures of polynomials (A. Schinzel)
  8. Weak automorphs of binary forms (A. Schinzel)
  9. Number of solutions of a linear homogeneous congruence in a box (A. Schinzel)
  10. Representation of a multivariate polynomial as a sum of univariate polynomials in linear forms (A. Schinzel)
  11. Polynomial and exponential congruences to a prime modulus (M. Skałba, A. Schinzel)
  12. Congruences for L-functions (J. Urbanowicz)
  13. Divisibility of a generalized Vandermonde determinant by powers of two (J. Urbanowicz)

Several people not employed by the Number Theory Section have collaborated in the study of the above topics, namely W. Schmidt in 1), M. Zakarczemny in 9), A. Białynicki in 10), K. Williams in 12) and S. Spież in 13).

Research papers published in 2005--2008 (March)

  1. J. Browkin (with J. Brzeziński), On sequences of squares with constant second differences, Canadian Math. Bulletin 48 (2006), 481--491.
  2. J. Browkin, Elements of small order in K2F, II, Chin. Ann. Math. Ser. B 28 (2007), 507--520.
  3. A. Schinzel, Self-inversive polynomials with all zeros on the unit circle, Ramanujan Journal 9 (2005), 19--23.
  4. A. Schinzel (with T. Bolis), Identities which imply that a ring is Boolean, Bull. Greek Math. Soc. 48 (2003), 1--5 (antedated).
  5. A. Schinzel (with S. Kanemitsu and Y. Tanigawa), Sums involving the Hurwitz zeta-function values, Zeta Function, Topology and Quanture Physics, 81-90, Springer 2005.
  6. A. Schinzel (with I. Aliev and W. M. Schmidt), On vectors whose span contains a given linear subspace, Monatsh. Math. 144 (2005), 177-191.
  7. A. Schinzel, On weak automorphs of binary forms over an arbitrary field, Dissert. Math. 434 (2005), 48 pp.
  8. A. Schinzel, On the reduced length of a polynomial, Functiones et Approximatio 35 (2006), 271--306.
  9. A. Schinzel (with M. Zakarczemny), On a linear homogeneous congruence, Colloq. Math. 106 (2006), 283--292.
  10. A. Schinzel, Reducibility of symmetric polynomials, Bull. Polish Acad. Sci. Mathematics 53 (2005), 251--258 (antedated).
  11. A. Schinzel (with L. Losonczi), Self-inverse polynomials of odd degree, Ramanujan Journal 14 (2007), 305--320.
  12. A. Schinzel, On the reduced length of a polynomial with real coefficients, II, Functiones et Approximatio 37 (2007), 445--459.
  13. A. Schinzel, Reducibility of a special symmetric form, Acta Math. Universitatis Ostraviensis 14 (2006), 71--74 (antedated).
  14. A. Schinzel (with A. Białynicki-Birula), Representations of multivariate polynomials by sums of univariate polynomials in linear forms, Colloq. Math. 112 (2008), 201--233.
  15. M. Skałba, On sets which contain a q-th power residue for almost all prime modules, Colloq. Math. 102 (2005), 67--71.
  16. M. Skałba, Primes dividing both 2n and 3n-2 are rare, Arch. Math. 84 (2005), 485--495.
  17. M. Skałba, Points on elliptic curves over finite fields, Acta Arith. 117 (2005), 293--301.

Besides the following book has been published
A. SchinzelSelecta (2 vols), ed. H. Iwaniec, W. Narkiewicz, J. Urbanowicz, Zürich 2007. 1

prof. dr hab. Łukasz Stettner
pok. 318 / tel. 22 5228 126


dr hab. Tomasz Klimsiak / prof. IM PAN / e-mail
prof. dr hab. Tomasz Komorowski / profesor / e-mail
dr Rafał Meller / adiunkt / e-mail
prof. dr hab. Tomasz Szarek / profesor / e-mail
dr Bogusław Zegarliński / prof. IM PAN / e-mail

O Zakładzie

Department of Probability Theory: chairman Łukasz Stettner (since 1.03.2009) former chairmen: Zbigniew Ciesielski  (1.01.1977-31.10.1999), Jerzy Zabczyk (1.11.1999-28.02.2009).

Tomasz Klimsiak

Areas of interest: PDEs with Nonlocal (integro-differential) Operators, The Obstacle Problem, Probabilistic Potential Theory,  Stochastic Differential Equations, Control and Optimization Theory, Mathematical Finance.

Selected publications:

- T. Klimsiak, M. Rzymowski, L. Słominski: Reflected BSDEs with two optional barriers, Bull. Sci. Math., Vol. 158 (2020), 102820.
- T. Klimsiak: Trace operator and the Dirichlet problem for elliptic equations on arbitrary bounded open sets, J. Funct. Anal., Vol. 277 (2019) 1499–1530.
- T. Klimsiak, A. Rozkosz: The Valuation of American Options in a Multidimensional Exponential Levy Model, Math. Finance,  Vol. 28 (2018) 1107–1142.
- T. Klimsiak: Semilinear elliptic equations with Dirichlet operator and singular Nonlinearities, J. Funct. Anal., Vol. 272, (2017) 929–975.
- T. Klimsiak: Reduced measures for semilinear elliptic equations involving Dirichlet operators, Calc. Var. 55:78 (2016).
- T. Klimsiak: Semi-Dirichlet forms, Feynman-Kac functionals and the Cauchy problem for semilinear parabolic equations, J. Funct. Anal., Vol. 268 (2015) 1205–1240.
- T. Klimsiak: Reflected BSDEs on Filtered Probability Spaces, Stochastic Process. Appl., Vol. 125 (2015) 4204–4241.
- T. Klimsiak: Semilinear elliptic systems with measure data, Ann. Mat. Pura Appl., Vol. 194 (2015) 55–76.
- T. Klimsiak, A. Rozkosz: Dirichlet forms and semilinear elliptic equations with measure data, J. Funct. Anal., Vol. 265 (2013) 890–925.
- T. Klimsiak: Reflected BSDEs and the obstacle problem for semilinear PDEs in divergence form, Stochastic Process. Appl., Vol. 122 (2012) 134–169.

Tomasz Komorowski

Areas of interest:  stochastic processes, partial differential equations, stochastic homogenization theory, statistical mechanics, turbulent transport theory, wave propagation in random media.

Selected publications:

- Komorowski, T., Diffusion Approximation for the Advection of Particles in a Strongly Turbulent Random Enviroment, Ann. of Prob. 24, pp. 346-376 (1996).
- Komorowski, T., Papanicolaou, G., Motion in a Gaussian, Incompressible Flow,  Annals of Appl. Prob. 7  pp. 229-264 (1997).
- Fannjiang, A.,  Komorowski, T., An Invariance Principle for Diffusion in  Turbulence,   Ann. of Prob. 27, 751-781, (1999).
- Komorowski, T.,  Olla, S.,  On Homogenization of Time Dependent Random Flows. Prob. Theory Rel. Fields 121, 98-116 (2001).
- Bal, G.,  Komorowski, T., Ryzhik, L., Weak self-averaging of the Wigner transform in random media. Comm. Math. Phys. 242, 81-135, (2003).
- Komorowski, T.,  Ryzhik, L., Diffusion in a weakly random Hamiltonian flow, Comm. in Math. Physics 263, 277 - 323, (2006).
- Jara, M., T. Komorowski, S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. of Appl. Prob. 19, 2270-2300, (2009).
- Jara, M., T. Komorowski, S. Olla, Superdiffusion of energy in a chain of harmonic oscillators with noise. Commun. Math. Phys. 339, 407-453 (2015).
- T. Komorowski, S. Olla, L. Ryzhik, H. Spohn, High frequency limit  for a chain of harmonic oscillators with a point Langevin thermostat. Archive for Rational Mechanics and Analysis volume 237, pages 497-543 (2020).
- T. Komorowski, S. Olla, L. Ryzhik, Fractional diffusion limit for a kinetic equation with an interface., Annals of Probability 2020, Vol. 48, No. 5, 2290-2322.

personal web page: › ~komorow

Michał Kotowski

Areas of interest: discrete probability, stochastic processes on graphs and groups, random permutations.

Selected publications:

- Jakob E. Björnberg, Michał Kotowski, Benjamin Lees, Piotr Miłoś, The interchange process with reversals on the complete graph, Electron. J. Probab. 24 (2019), no. 108, 43 pp.
- Radosław Adamczak, Michał Kotowski, Bartłomiej Polaczyk, Michał Strzelecki, A note on concentration for polynomials in the Ising model, Electron. J. Probab. 24 (2019), no. 42, 22 pp.
- Michał Kotowski, Bálint Virág, Non-Liouville groups with return probability exponent at most 1/2, Electron. Commun. Probab. 20 (2015), no. 12.
- Marcin Kotowski, Michał Kotowski, Random groups and property (T): Żuk's theorem revisited, J. London Math. Soc. (2013) 88 (2): 396-416.
- Remigiusz Augusiak, Tobias Fritz, Marcin Kotowski, Michał Kotowski, Marcin Pawłowski, Maciej Lewenstein, Antonio Acín, Tight Bell inequalities with no quantum violation from qubit unextendible product bases, Phys. Rev. A 85, 042113 (2012).
- Marcin Kotowski, Michał Kotowski, Marek Kuś, Universal nonlinear entanglement witnesses, Phys. Rev. A 81, 062318 (2010).

Personal web page:

Łukasz Stettner

Areas of interest: optimal stopping and impulse control, ergodic and risk sensitive control, partial observation, asymptotical properties of controlled problems, markets with transaction costs, arbitrage theory.

Selected publications:

- G. B. Di Masi, L. Stettner, Risk sensitive control of discrete time Markov processes with infinite horizon, SIAM J. Control Optimiz., 38 (2000), 61-78.
- M. Rasonyi, L. Stettner, On utility maximization in discrete - time market models, Annals of Applied Prob., 15 (2005), 1367-1395.
- G.B. Di Masi, L. Stettner, Infinite horizon risk sensitive control of discrete time Markov processes under minorization property, SIAM J. Control Optimiz. 46 (2007), 231-252.
- L. Stettner, Penalty method for finite horizon stopping problems, SIAM J. Control Optim., 49 (2011), 1078-1999.
- J. Palczewski,  L. Stettner, Infinite horizon stopping problems with (nearly) total reward criteria, Stochastic Processes and Their Applications 124 (2014), 3887-3920.
- J. Palczewski,  L. Stettner, Impulse control maximising average cost per unit time: a non-uniformly ergodic case, SIAM J. Control Optim.,  2017, Vol. 55, No. 2, pp. 936-960, DOI:10.1137/16M1085991.
- T. Rogala, L. Stettner, Optimal strategies for utility from terminal wealth with general bid and ask prices, published online in December 2018, Applied Mathematics and Optimization doi:  10.1007/s00245-018-9550-5.
- L. Stettner, Long run control of Markov processes with degenerate observation, SIAM J. Control Optim. 57 (2019), 880-899  //
- A. Basu, L. Stettner, Zero-Sum stopping games with impulse controls, SIAM J. Control Optim. 58 (2020), 580-604, //
- D. Jelito, M. Pitera, L. Stettner, Long-Run risk sensitive impulse control, SIAM J. Control Optim 58 (4) (2020), 446--2468,

Personal web page:

Tomasz Szarek

Areas of interest: Ergodic Properties of Markov Processes, Random Dynamical Systems, Fractal Sets.

Selected Publications:

- T. Szarek, The stability of Markov operators on Polish spaces, Studia Math. 143 (2000), 145-152.
- J. Myjak, T. Szarek, Szpilrajn type theorem for concentration dimensions, Fund. Math. 172 (2002), 19–25.
- A. Lasota, T. Szarek, Dimension of measures invariant with respect to Ważewska partial differential equations, J. Differential Equations  196 (2) (2004), 448-465.
- T. Szarek, S. Wędrychowicz, The OSC does not imply the SOSC for infinite iterated function systems, Proc. Amer. Math. Soc. vol. 133 (2005), 437-440
- T. Szarek, Feller processes on non-locally compact spaces, Ann. Probab. 34 (5) (2006), 1849–1863.
- A. Lasota, T. Szarek,  Lower bound technique in the theory of a stochastic differential equation, J. Differential Equations 231 (2) (2006), 513–533.
- T. Komorowski, S. Peszat, T. Szarek,  On ergodicity of some Markov processes, Ann. Probab. 38 (4) (2010), 1401--1443. 
- T. Szarek, D.T.H. Worm, Ergodic measures of Markov semigroups with the e-property, Ergodic Theory Dynam. Systems 32 (2012), no. 3, 1117-1135
- S. Hille, T. Szarek, M. Ziemiańska, Equicontinuous families of Markov operators in view of asymptotic stability, C. R. Math. Acad. Sci. Paris, Ser. I. 355 (2018), 1247-1251.
- K. Czudek, T. Szarek,  Ergodicity and Central Limit Theorem for random interval homeomorphisms, Israel J. Math. 239 (2020), 75--98.


Witold Świątkowski

Areas of interest: Stochastic Recurrence Equations, Random Matrices.

Selected Publications:

- W. Świątkowski, Absolute continuity of solutions to the affine stochastic equation, Colloquium Mathematicum 149 (2016), 125–136.
- E. Damek, M. Matsui, W. Świątkowski, Componentwise different tail solutions for bivariate stochastic recurrence equations – with applications to GARCH(1,1) processes, Colloquium Mathematicum 155 (2018), 227–254.
- M. Matsui, W. Świątkowski, Tail indices for AX + B recursion with triangular matrices, Journal of Theoretical Probability (2020),
- W. Świątkowski, Regularity of stationary solutions to AX+B recursion with triangular matrices, (2020) preprint.


dr hab. Maciej Borodzik / prof. nadzw. / e-mail
dr Alberto Cavallo / adiunkt / e-mail
mgr Karol Duda / asystent / e-mail
dr hab. Paweł Dłotko / Kierownik Centrum Dioscuri / prof. IM PAN / e-mail
dr Leonardo Ferrari / adiunkt / e-mail
prof. dr hab. Lech Tadeusz Januszkiewicz / profesor / e-mail
dr Michał Lasoń / adiunkt / e-mail
dr Antonio López-Neumann / adiunkt / e-mail
dr Piotr Mizerka / adiunkt / e-mail
dr Bartosz Naskręcki / adiunkt / e-mail
dr hab. Piotr Nowak / prof. IM PAN / e-mail
dr inż. Justyna Signerska-Rynkowska / adiunkt / e-mail
dr Rafał Topolnicki / adiunkt / e-mail

O Zakładzie

Below are the descriptions of the main research results or research areas of the full time employees. 

Sylwia Antoniuk

My main areas of research are Combinatorics and Geometric Group Theory with special interest in random structures such as random groups, random simplicial complexes, random graphs and hypergraphs. My main results concern the study of the evolution of the random triangular group.

Selected papers:
Sylwia Antoniuk, Ehud Friedgut, and Tomasz Łuczak, A sharp threshold for collapse of the random triangular group, arXiv:1403.3516
Sylwia Antoniuk, Tomasz Łuczak, and Jacek Świątkowski, Random triangular groups at density 1/3, Compositio Mathematica, vol. 151, issue 01, p. 167-178. (arXiv:1308.5867)
Sylwia Antoniuk, Tomasz Łuczak, and Jacek Świątkowski, Collapse of random triangular groups: a closer look, Bull. Lond. Math. Soc., vol. 46, issue 4 (2014), p. 761-764 (arXiv:1304.3583)

Łukasz Garncarek

My research interests revolve around geometric group theory and representation theory of groups. Roughly speaking, I investigate unitary representations arising from geometric group theory. For instance, in my PhD thesis I constructed a large family of irreducible unitary representations of an arbitrary Gromov hyperbolic group, using its action on the visual boundary. Among other things, I am interested in extending this construction into analogues of the principal series and complementary series, appearing in the representation theory of Lie groups.

Tadeusz Januszkiewicz

I am interested in topology aspherical spaces, especially manifolds. Proving asphericity is often done by exhibiting a metric, or a similar combinatorial structure, with properties resembling nonpositive curvature. There are several abstract schemes and constructions in this direction, but there are also natural candidates for such approach arising in nature, such as iterated blowups or ramified covers.

Piotr Nowak

I am interested mainly in geometric and analytic properties of discrete groups and their applications to other areas, such as higher index theory. The main topics include rigidity properties of groups, such as various strengthening of property (T), as well as the opposite properties viewed as versions of amenability. These notions often can be expressed in terms of (co)homological properties of groups or spaces and have a significant intersection with large scale geometry and topology of non-compact manifolds.

Damian Osajda

I am working mostly in Geometric Group Theory. My main area of interest is studying complexes with some nonpositive curvature features, and groups acting on them. This includes objects that are: Gromov hyperbolic, small cancellation, CAT(0) cubical, (weakly) systolic, bucolic, weakly modular etc.  

Stanisław Spież

My major areas of research are shape theory (and indirectly homotopy theory), dimension theory, theory of embeddings and game theory.
Several of my papers in shape theory are devoted to studying movable spaces (their role is similar to that of CW-complexes in homotopy theory) and deformation dimension (which corresponds to the homotopical dimension). Some of my results in that area are related to the classical Whitehead and Hurewicz theorems in homotopy theory. Also I investigated the possibility of representing the strong shape category in the homotopy category.
Another area of my research is related to the following questions: "When can a pair of mappings of compact metric spaces X and Y into Rn be approximated by mappings with disjoint images, and also when can a map X→Rn be approximated by embeddings?'' Since the 1930's the standard answer to the latter has been "It suffices that 2 dim X < n" turns out that it is sufficient that dim(X×X) < n. Some other papers of mine concern the first question (which is more general).
Also I was interested in the questions of embedding polyhedra into Euclidean spaces, which were related to the van Kampen and Haefliger-Weber theorems. Recently I am also involved in research in game theory. Some results on the existence of equilibria in a class of games can be proved by using topological tools, such as coincidence theorems of Borsuk-Ulam type.
Several of the above results were obtained in collaboration with the following mathematicians: B. Günther, S. Nowak, J. Segal, R. Simon, A. Skopenkov and H. Toruńczyk.

Henryk Toruńczyk

Major part of my research concerned topological properties of infinite-dimensional spaces, such as the Hilbert cube or Banach spaces. I consider the following my main results:

  • developing a method of constructing smooth partitions of unity on Banach spaces in the absence of separability [20];
  • proving that a product of an absolute retract with an appropriate normed linear space becomes homeomorphic to that space [21];
  • proving, simultaneously with S. Ferry, that the homeomorphism group of a Hilbert cube manifold is a manifold [22];
  • characterizing infinite-dimensional manifolds topologically (see R. D. Edwards' article in SLN 770, 278-302). As a consequence it turned out that infinite-dimensional Banach spaces of the same weight are homeomorphic;
  • examining, jointly with S. Spież, when mappings X, Y→Rk can be ε-approximated by mappings with disjoint images [18];
  • establishing, jointly with R. Simon and S. Spież, the existence of equilibria in a class of infinitely repeated games. (The proof in [19] depended on developing an appropriate topological aparatus.)



dr hab. Artem Dudko / prof. IM PAN / e-mail
dr hab. Jonatan Gutman / prof. IM PAN / e-mail
dr Łukasz Pawelec / adiunkt / e-mail
prof. dr hab. Feliks Przytycki / profesor / e-mail
dr hab. Michał Rams / prof. IM PAN / e-mail
dr Adam Śpiewak / adiunkt / e-mail

O Zakładzie

The Laboratory exists since 2006. Before it was a part of the Laboratory of Functional Analysis. Its long term research staff includes: Feliks Przytycki (the head, permanent position), Michal Rams (permanent position), Yonatan Gutman (permanent position), Artem Dudko (long term position), Leticia Pardo-Simon (2 years, till 2021),  Ruxi Shi (2 years, till 2021).

Also 2 years, to expire in 2020: Adam Abrams, Welington Cordeiro, David Marti-Pete. Dyi-Shing Ou. Other postdocs in recent years: Vassiliki Evdoridou, Bingbing Liang, Zhenxing Lian, Olena Karpel, Genadi Levin, William Mance, Lei Jin. The main fields of research run in the Laboratory are holomorphic dynamics in dimension one, dynamical fractals and geometric dimensions, topological and smooth dynamics, ergodic theory and other topics in dynamical systems. The Laboratory runs weakly dynamical systems seminar and cooperates with Dynamical Systems Laboratory at the University of Warsaw and with the Warsaw University of Technology. Two NCN

Grants are run by the members:

– M. Rams, NCN Opus 2020-2023. „Chaos, fractals, dynamics non only conformal”  (team: L. Jaksztas, J. Kotus, F. Przytycki)

– Y. Gutman. NCN Sonata bis 2017-2020, „Mutual conections of ergodic theory and topological dynamics.”

– K. Czudek, NCN Preludium 2020-2022, „Random and deterministic dynamics on 1-dimensional manifolds.

PhD students:

1. Klaudiusz Czudek

2. Reza Mohammadpour (2017-2020)

Some recent publications:

1. Iteration of holomorphic maps and maps of interval, maps in low dimension, and their geometric complexity

– A. Abrams, S. Katok, I. Ugarcovici, Flexibility of entropy of boundary maps for surfaces of constant negative curvature, accepted to Ergodic Theory Dynam. Systems.

– Dudko, Artem; Sutherland, Scott, On the Lebesgue measure of the Feigenbaum Julia set. Invent. math.  221 (2020), no. 1, 167–202.

– Dudko, Artem; Yampolsky, Michael,  Almost every real quadratic polynomial has a poly-time computable Julia set. Found. Comput. Math. 18 (2018), no. 5, 1233–1243.

– Ou, Dyi-Shing,  Nonexistence of wandering domains for strongly dissipative infinitely renormalizable Hénon maps at the boundary of chaos. Invent. math. 219 (2020), no. 1, 219–280.

--Vasiliki Evdoridou, David Marti-Pete and David J. Sixsmith, Spiders' webs in the punctured plane
accepted to Ann. Acad. Sci. Fenn. Math. 

– Feliks Przytycki, Juan Rivera-Letelier, Geometric pressure for multimodal maps of the interval.
Memoirs of the American Mathematical Society 1246 (2019) 1-81.

– Feliks Przytycki, Thermodynamic formalism methods in one-dimensional real and complex dynamics, Proceedings of the International Congress of Mathematicians 2018, Rio de Janeiro, Vol.2, pp. 2081-2106.

– Genadi Levin, Feliks Przytycki, Weixiao Shen, The Lyapunov exponent of holomorphic maps.
Inventiones mathematicae 205 (2016) 363-382.

– Díaz, L. J.; Gelfert, K.; Rams, M. Entropy spectrum of Lyapunov exponents for nonhyperbolic step skew-products and elliptic cocycles. Comm. Math. Phys. 367 (2019), no. 2, 351–416.

Gelfert, Katrin; Przytycki, Feliks; Rams, Michał Lyapunov spectrum for multimodal maps. Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1441–1493.

2. Dynamical fractals and geometric dimensions,

Bárány, Balázs; Rams, Michał, Shrinking targets on Bedford-McMullen carpets. Proc. Lond. Math. Soc. (3) 117 (2018), no. 5, 951–995.

Rams, Michał; Simon, Károly The dimension of projections of fractal percolations. J. Stat. Phys. 154 (2014), no. 3, 633–655.

3. Topological and smooth dynamics,

– Alfonso Artigue, Bernardo Carvalho, Welington Cordeiro, José Vieitez, Beyond topological hyperbolicity: The L-shadowing property, J. Differential Equations, accepted for publication.

4. Ergodic theory and topological dynamics,

– Gutman, Yonatan; Tsukamoto, Masaki, Embedding minimal dynamical systems into Hilbert cubes. Invent. math. 221 (2020), no. 1, 113–166.

– Gutman, Yonatan; Manners, Freddie; Varjú, Péter P. The structure theory of nilspaces III: Inverse limit representations and topological dynamics. Adv. Math. 365 (2020).

– Jonatan Gutman, with Eli Glasner i XiangDong Ye, Higher order regionally proximal equivalence relations for general minimal group actions, Adv. Math. 333 (2018) 1004-1041.

5. Other topics related to dynamical systems.

– Dudko, Artem; Grigorchuk, Rostislav On the question "Can one hear the shape of a group?'' and a Hulanicki type theorem for graphs, Israel. J. Math.  237 (2020), no. 1, 53–74.

– Yonatan Gutman, with Yixiao Qiao and Masaki Tsukamoto, Application of signal analysis to the embedding problem of Zk-actions, Geom. Funct. Anal. 29 (2019) 1440-1502.

Dynamical system:

Research activities:

  • Numerical analysis of spectral problems (Pokrzywa, Regińska)
  • Numerical analysis of methods for solving partial differential equations (Wakulicz, Deriaz)
  • Applications of wavelets to problems of numerical analysis (Deriaz, Pokrzywa, Regińska, Wakulicz)
  • Discrete ill-posed problems (Regińska)
  • Inverse problems for partial differential equation and regularization methods (Regińska, Wakulicz, Deriaz)

A seminar organized by the Laboratory covers a wide scope of numerics and attracts attention of mathematicians from other institutes.

The laboratory also organized at the Banach Center mini-schools, directed especially towards young researchers: Regularization methods for ill-posed problems of analysis and statistics – lectures of S. Pereverzyev, (15-25 May 2007); Course on inverse and ill-posed problems – lectures of Andreas Neubauer (26-29 March 2008).

Selected publications:

  • S. Piszczatowski, K. Skalski, G. Sugocki and A. Wakulicz, Finite element method formulation for the interactions between various elastic-viscoelastic structures in biomechanical model, in: Computer Methods in Biomechanics & Biomedical Engineering-2, J. Middleton, M. L. Jones and G. N. Pande (eds.), Gordon and Breach, (1998), 313-320.
  • L. Eldén F Berntsson, T. Regińska, Wavelet and Fourier methods for solving the sideways heat equation, SIAM J. Sci. Comput. Vol 21, No.6, pp. 2187-2205, (2000)
  • T.Regińska, L.E ldén, Stability and convergence of wavelet-Galerkin method for sideways heat equation, J. Inverse and Ill-Posed Problems, vol. 8, no.1, pp. 31-49 (2000)
  • T. Regińska, Application of wavelet shrinkage to solving sideways heat equation, BIT vol.41, no 5, pp. 1101-1110 (2001)
  • T.Regińska, Regularization parameters choosing for discrete ill-posed problems, in "Inverse Problems in Engineering Mechanics IV" (Proceedings of the International Symposium on ISIP2003) M.Tanaka (ed.), Elsevier 2003, pp. 457-464.
  • T. Regińska, Regularization of discrete ill-posed problems, BIT Numerical Mathematics vol.44, pp. 119-133 (2004)
  • W. Grzesikiewicz, A. Wakulicz, Axiomatic formulation of thermodynamics ideal gas laws, KONES Journal of Powertrian and Transport vol .13. no. 103-110 (2006)
  • T. Regińska, K. Regiński, Approximate solution of a Cauchy problem for the Helmholtz equation, Inverse Problems 22, pp. 975-989 (2006)
  • T. Regińska, A. Wakulicz, Wavelet moment method for Cauchy problem for the Helmholtz equation, Journal of Comp. and Appl. Math, (2008), 
  • W. Arendt, T. Regińska, An ill-posed boundary value problem for the Helmholtz equation on Lipschitz domain,  Journal of Inverse and Ill-Posed Problems 71, 703-711 (2009)
  • A. Pokrzywa, Regularization methods for unbounded linear operators, Journal of Inverse and Ill-posed problems 18 no 6, (2010)
  • U. Tautenhahn, T. Regińska, Conditional stability estimates and regularization with application to Cauchy problems for the Helmholtz equation, Numer. Funct. Anal. and Optimiz. 30 (9-10) 1065-1097 (2009)


prof. dr hab. Piotr M. Hajac / profesor / e-mail
dr Matthias Schötz / adiunkt / e-mail

O Pracowni

Noncommutative geometry entered the research programme of IMPAN in 1999. Five years later, with the help of the Warsaw University transfer-of-knowledge grant Quantum Geometry, this branch of IMPAN's mathematics gained an international dimension. Since 2004, there are about 10-20 visitors per year who contribute their research experience and give talks at the weekly Noncommutative Geometry Seminar held in the Institute. Among our invitees were Alain Connes and Maxim Kontsevitch, and the seminar talks are announced to about 200 mathematicians worldwide.

The aforementioned scientific activity helped to cristalize a local research team consisting of Piotr M. Hajac, Ulrich Krähmer, Tomasz Maszczyk and Bartosz Zieliński. Ulrich Krähmer was a Marie Curie fellow in the years 2005-2007. In January 2008, the Noncommutative Geometry Research Unit was formally created by the Institute Scientific Council. In October 2008, the team was enlarged by Emily Burgunder, who chose IMPAN for her European Postdoctoral Institute fellowship.

Another chapter of Noncommutative Geometry at IMPAN opened in 2009 with the EU- project Geometry and Symmetry of Quantum Spaces. Co-sponsored by the Polish Government, this 4-year international research staff exchange programme established a transcontinental network of 12 nodes with IMPAN as the co-ordinating node. In particular, we welcomed in our group Paul F. Baum who joined us as a Visiting Professor working at IMPAN a month each year. Our mathematical environment was further enriched by Adam Skalski who came as another Marie Curie Postdoctoral Fellow for the years 2010-2012. Together with Paweł Kasprzak, Andrzej Sitarz, and Piotr M. Sołtan employed on short-term position, our Research Unit got top expertise in topological quantum groups and spectral geometry. On the other hand, a Ph.D.-student Jan Rudnik started his collaboration with Baum and Hajac on computing the K-theory of triple-pullback C*-algebras.

The key words characterizing IMPAN's research in noncommutative geometry are: K-theory of operator algebras and free actions of compact quantum groups on unital C*-algebras, multi-pullback C*-algebras and free distributive lattices of ideals, index theory of Fredholm modules and spectral geometry of Dirac operators, locally compact quantum groups and universal (free) quantum groups, Hopf-cyclic homology with coefficients and Chern-Galois character, corings and monoidal categories. The assumed research strategy is to explore the feedback between solving concrete difficult problems and developing new mathematical structures. The proposed approach is to unite rather than separate different fields of mathematics by taking advantage of complemetary tools that they offer. To this end, a large scale and intensive international collaboration is currently sustained and planned for the future.

A more systematic and detailed description of the aforementioned research profile is as follows:

1. K-theory of operator algebras. Computing K-theory of C*-algebras of quantum projective spaces of Toeplitz-type. Noncommutative version of the Borsuk-Ulam for a family quantum spheres. Non-existence of Z/2-equivariant homomorphisms from a unital C*-algebra A into its unital suspension SA. Computing the K-theory of noncommutative Bieberbach manifolds. An example of a published paper in this area of research is: P. F. Baum, P. M. Hajac, R. Matthes, W. Szymański, The K-theory of Heegaard-type quantum 3-spheres, K-Theory (2005) 35:159-186.

2. Hopf-cyclic homology and Chern-Galois character. Applying new coefficients of Hopf-cyclic homology and cohomology. Studying relationships between De Rham cohomology with coefficients in flat vector bundles and cyclic homology with coefficients. Version of the local index formula of Connes-Moscovici for twisted cyclic cohomology. Extending cyclic (co)homology with coefficients from algebras to monoidal functors. Among pivotal papers for this area of research are: P. M. Hajac, M. Khalkhali, B. Rangipour, Y. Sommerhäuser, Hopf-cyclic homology and cohomology with coefficients, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 667-672; T. Brzeziński, P. M. Hajac, The Chern-Galois character, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 113-116.

3. Spectral geometry and index theorem. Proving an analogue of the 2-dimensional Gauss-Bonnet for spectral triples. Stability of spectral triples and regular spectral geometries. Constructing spectral triples on cross-products of C*-algebras and studying their topological properties. Studying contact structures by means of noncommutative geometry. An example of a published paper related to this area of research is: P. M. Hajac, R. Matthes, W. Szymański, Noncommutative index theory of mirror quantum spheres, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 731-736.

4. Quantum group actions. Equivalence of principality of actions by compact quantum groups on unital C*-algebras and the Hopf-Galois condition for induced coactions of corresponding polynomial Hopf algebras. Applying non-contractibility of compact quantum groups to prove non-triviality of noncommutative principal bundles obtained by means of the join construction of compact quantum groups. Proving principality of piecewise principal actions. Constructing examples of quantum spaces without group structure and actions of non-compact locally compact quantum groups. Quotienting of locally compact quantum groups by their closed subgroups. Studying quantum symmetry groups of group C*-algebras, especially focused on their representation theory. In particular, classification of compact group actions on the C*-algebra of 2 by 2 matrices. Finding non-classical quantum permutations on two elements. Extending Hopf-Galois theory to monoidal categories. An example of a published paper in this area of research is: P. M. Sołtan: Examples of non-compact quantum group actions, J. Math. Anal. Appl. 372 (2010), 224-236.

5. Quantum spaces, sets, and cohomology. Noncommutative deformations of complex projective spaces glued from Toeplitz cubes and other multi-pullback constructions of algebras. Constructing of a category of quantum sets (or quantum algebraic sets) and extenting of the contravariant adjunction between the category of sets and the category of commutative algebras to noncommutative sets and associative algebras. Generalizing the notion of a discrete (or algebraic) group to the corresponding notion making sense for quantum sets (or quantum algebraic sets). Constructing a recursive algorithm for computing genus zero Gromov-Witten invariants of some Fano varieties, generalizing the formula of Kontse


dr Łukasz Kuciński / adiunkt / e-mail
dr hab. Piotr Miłoś / prof. IM PAN / e-mail

Samodzielna Grupa Machine Learning .

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek