Stochastic Processes

prof. dr hab. Łukasz Stettner, prof. dr hab. Szymon Peszat, prof. dr hab. Jerzy Zabczyk

Tuesday, 12.00-14.00, 106; specjalne sesje seminarium będą się odbywały w godz. 11.30-14.45

Program

  • 9.05.2017, seminarium od 12.15 do 15

12.15-13.30  Marzia DE DONNO (Parma), American options: the double continuation region.
Abstract: Some decision-making problems in finance, such as capital investment options, prepayment options  in gold loans, American quanto options, can be reformulatedin some cases as American options problems with and endogenous negative interest rate. We study the non-standard optimal exercise policy for American options when the interest rate is negative. In this case option exercise is optimally postponed not only when moneyness is insufficient but also when it is excessive. We give sufficient and necessary conditions for the existence of the double continuation region and extend the classical optimal exercise properties of the double free boundary that separates the exercise region from the double continuation region.

13.45-15  Maciej Wiśniewolski, O funkcjonałach na  
przestrzeni wycieczek dla procesu Bessla z ujemnym indeksem.

Streszczenie: Rozważamy przestrzeń U funkcji ciągłych o wartościach nieujemnych  
startujących z punktu x i powracających do niego w skończonym czasie.  
Rozważamy punktowy proces Poissona o wartościach w U skonstruowany z  
fragmentów trajektorii procesu Bessla o ujemnym indeksie między  
kolejnymi odwiedzinami punktu x. Dzięki parametryzacji czasem lokalnym  
potrafimy opisać całki po trajektoriach procesu Bessla jako  
funkcjonały na U względem miary Ito dla wycieczek. Z drugiej strony  
całki te potrafimy opisać dzięki znajomości rozkładu pierwszego  
momentu dojścia do x oraz wartości procesu Bessla w ustalonej chwili.  
Synteza tych dwóch metod prowadzi nas do uniwersalnego wzoru  
opisującego funkcjonały całkowe na U. W szczególności otrzymujemy  
elementarny wzór na czas przebywania wycieczki w ustalonym zbiorze  
względem miary Ito dla wycieczek.

  • 7.03.2017, seminarium od 12.15 do 15.00

 12.15-13.30 Prof. Ben Gołdys (University of Sydney), " Rownanie dla potoku odwzorowan harmonicznych z losowym zaburzeniem".
Abstrakt: Bedziemy rozwazac rownanie dla potoku odwzorowan harmonicznych o wartosciach w dwuwymiarowej sferze. W przypadku rownania deterministycznego znane sa przyklady, gdy w skonczonym czasie powstaja osobliwosci rozwiazania. Pytanie, czy szum moze zapobiec powstaniu osobiliwosci, pozostaje otwarte. Opowiemy co obecnie wiadomo na temat tego problemu.

Bedziemy opierac sie na wspolnej pracy z Ngan le Kim i na niedawnej pracy M. Hocquet.,

13.45-15.00 Prof. Tomasz Szarek (UG), ''EQUICONTINUOUS FAMILIES OF MARKOV OPERATORS IN VIEW
OF TIGHTNESS AND ASYMPTOTIC STABILITY’'
Abstrakt: We show that any asymptotically stable Markov-Feller operator on a Polish space has the so-called Ces\`aro e-property. This is a particular equicontinuity condition on the family of iterates of the operator on Borel probability measures or its dual operator on continuous bounded functions.
Under the additional condition that the interior of the support of the unique invariant measure is non-empty, the operator will have the stronger e-property.
 

  • 10.01.2017, seminarium od 12.15 do 15.00

12.15-13.30 Prof. Tadeusz Kulczycki (PWr), pt. "Własności rozwiązań równań -(-\Delta)^{\alpha/2} u = f(x,u)"
Abstrakt: Zbadamy własności rozwiązań równań -(-\Delta)^{\alpha/2} u = f(x,u) w pewnych pierścieniach w R^n. Przy odpowiednich założeniach na pierścienie, na warunki brzegowe i na funkcje f pokażemy pewne geometryczne własności funkcji u.
13.45-15.00 Dr Mariusz Niewęgłowski (PW),  pt. "Twierdzenia Feynmana-Kaca dla procesów w losowych ośrodkach"
Abstrakt: Klasyczne Twierdzenia Feynmana-Kaca  mówią o związkach pomiędzy pewnymi
addytywnymi funkcjonałami ruchu Browna a pewnymi zagadnieniami z równań różniczkowych cząstkowych (zag. Cauchyego lub Dirichleta). W referacie będą przedstawione uogólnienia tych twierdzeń dla procesów stochastycznych które są dane jako rozwiązania równań stochastycznych skokow-dyfuzyjnych w losowych ośrodkach. Losowy ośrodek jest tu modelowany procesem stochastycznym o skończonej przestrzeni stanów i trajektoriach cadlag. Istnienie i jednoznaczność rozwiązań równań w losowych ośrodkach była badana we wcześniejszej pracy pt "Jump-diffusion processes in random environments" (współautor J.Jakubowski) która ukazała się w Journal of Differential Equations V.257, Issue 7, 2014. Prezentowane wyniki stanowią kontynuację tych badań.
 

  • 6.12.2016, seminarium od 12.15 do 15.00

12.15-13.30 R. Rudnicki (IMPAN), Twierdzenie o rozkładzie półgrup podstochastycznych.
Abstrakt:Półgrupy podstochastyczne, to ciągłe półgrupy dodatnich kontrakcji  na przestrzeni L1(X). Są używane do opisu  i badania  ewolucji rozkładów procesów Markowa. Będziemy rozpatrywać przypadek, gdy przestrzeń X jest metryczna i ośrodkowa. Pokażemy, że jeżeli półgrupa ma lokalną minorantę całkową, to asymptotycznie daje się rozłożyć na sumę części asymptotycznie stabilnych i część wymiatającą. Przedstawimy również pewne wnioski z tego twierdzenia wygodne w badaniu konkretnych półgrup, a szczególności związanych z procesami kawałkami deterministycznymi.
13.45-15.00 T. Klimsiak (IMPAN, UMK),  Problem optymalnego przełączania i związane z nim układy nierówności quasi-wariacyjnych.
Abstrakt: Przedstawione będą wyniki na temat istnienia i jednoznaczności rozwiązań dla pewnej klasy wielowymiarowych stochastycznych równań różniczkowych wstecz z ukośnym odbiciem związanych z tzw. problemem optymalnego przełączania na przestrzeni z ogólną filtracją.
Przy pomocy rozwiązań tych równań można podać formułę na strategię optymalną. Następnie w przypadku markowskim można podać  związki funkcji wartości z pewną klasą układów nierówności quasi-wariacyjnych.

  • 22.11.2016, seminarium od 12.15 do 15.00

12.15-13.30 S. Olla, CEREMADE,UMR-CNRS,Université Paris Dauphine, PSL, Entropic hypercoercivity and hydrodynamic limits.Abstract:Entropic hypercoercivity provides estimates uniform in the dimensions of the dynamics, that are useful in proving hydrodynamic limit. In particular we use it to prove diffusive isothermal  macroscopic transformations for a chain of non-linear oscillators immersed in a heat bath with a gradient of temperatures.

oraz

13.45-15.00 Szymon Peszat (UJ, IMPAN), O pewnych wynikach M. Hairera (kontynuacja)

  • 18.10.2016, seminarium od 12.15 do 15.00

12.15-13.30 Sz. Peszat UJ, IMPAN), O pewnych wynikach M. Hairera.

13.45-15.00 J. Wesołowski (PW), Kwadratowe harnessy, a ASEPy

Streszczenie: Przedstawię reprezentację funkcji generującej rozkład stacjonarny ASEPów (asymetric simple exclusion process) za pomocą momentów procesów z pewnej podklasy kwadratowych harnessów. Konstrukcja procesów z tej podklasy jest związana z własnościami wielomianów Askey-Wilsona. Pokażę, jak można, moim zdaniem zgrabnie, wykorzystać wspomnianą reprezentację do dowodu zasady wielkich odchyleń dla średniej zajętości miejsc w ASEPie oraz do otrzymywania wzorów całkowych dla pewnych parametrów ASEPów. Są to wyniki otrzymane wspólnie z W. Brycem (Cincinnati).

Przy okazji przypominam o wykładzie prof. T. Bojdeckiego z ogólnej teorii procesów stochastycznych w godz. 10.15-12.00 we wtorki w sali 106 (w tym również 18 października).

 

  • 15.03.2016 seminarium od 11.30 do 14.45

11.30-13.00 dr Maciej Wiśniewolski (UW) "O zabitym procesie Bessla".

Abstrakt: Celem wystąpienia jest zaprezentowanie gęstości przejścia dla zabitego  procesu Bessla. W naszym przypadku zabity proces powstaje z procesu  Bessla o nieujemnym indeksie i startującym z 1 poprzez wysłanie tego  procesu poza przestrzeń stanów w chwili pierwszego dojścia do  ustalonego punktu y (u nas y z (0,1)). Poprzez uogólnienie równania  Volterry opisującego dojście do 0 dla procesu Bessla o ujemnym  indeksie oraz dzięki własnościom mostu Bessla otrzymujemy pewne  probabilistyczne tożsamości dzięki którym możemy opisać gęstość  zabitego procesu. Dzięki znajomości gęstości zabitego procesu Bessla  możemy opisać rozkład łączny pierwszego momentu dojścia do punktu oraz  procesu Bessla. Inne zastosowania wiążą się z teorią wycieczek.

13.15-14.45 dr Marcin Pitera (UJ), "Optymalizacja portfelowa dla wrażliwego na ryzyko wzrostu".

Abstrakt: W referacie tym zajmę się problemem optymalizacji portfelowej na dyskretnym oraz nieskończonym horyzoncie czasowych, przy wykorzystaniu wrażliwego na ryzyko funkcjonału celu (ang. risk sensitive criterion). Pokażę jak dowodzić istnienia rozwiązania dla skojarzonego równania Bellmana w przypadku nieograniczonym, wprowadzając tzw. normy wagowe. W szczególności omówię problem istnienia optymalnej strategii inwestycyjnej przy założeniu, iż czynniki ekonomiczne stymulujące dynamikę akcji są ergodyczne, choć niekoniecznie jednostajnie ergodyczne. Referat ten bazuje na wspólnej pracy z prof. Ł. Stettnerem (IMPAN).

 

  • 19.01.2016 seminarium od 11.30 do 14.45
    • 11.30-13.00 dr T. Klimsiak, "Probabilistyczne rozwiązania nielokalnych półliniowych równań różniczkowych cząstkowych z miarami borelowskimi" Abstrakt:W referacie przedstawię definicję rozwiązań probabilistycznych dla szerokiej klasy półliniowych równań różniczkowych cząstkowych z operatorem Dirichleta oraz miarą borelowską o skończonym potencjale (niekoniecznie gładką). Następnie przedstawię wyniki o istnieniu i regularności rozwiązań w przypadku gdy nieliniowość jest monotoniczna (bez założeń na wzrost) oraz związaną z problemem teorię miar zredukowanych.
    • 13.15-14.45 prof. T. Szarek, "Centralne Twierdzenie Graniczne dla niestacjonarnych łańcuchów Markowa” Abstrakt: W referacie pokażemy jak, budując coupling na trajektoriach, wyprowadzić CTG dla niestacjonarnych łańcuchów Markowa eksponencjalnie zbieżnych do equilibrium z przypadku stacjonarnego.
  • 15.12.2015 sesja problemowa:
    • 11.30-12.15 prof. J. Zabczyk, "Nieskończenie podzielne procesy Markowa"
    • 12.15-13.00 prof. T. Byczkowski, "Hiperboliczny proces stabilny. Problemy i hipotezy"
    • 13.15-14.00 prof. Sz. Peszat, "Stochastyczne równanie ciepła z białym szumem w wymiarach d=2,3"
    • 14.00-14.45 prof. R. Łochowski: 1) Związki pomiędzy zliczaniem przeskoków przedziałów, "generalized arc length", uciętym wahaniem, czasami lokalnymi i teorią potencjału procesów Levy'ego, semimartyngałów i typowych procesów cen ze skokami; 2) Związki między asymptotyką uciętego wahania i istnieniem \psi wahania typowych procesów cen i nieregularnych ścieżek.
  • 17.11.2015 - 11.30 sesja problemowa:
    • 11.30-12.15 Ł. Stettner "Problem optymalnej wypłaty dywidendy dla modelu firmy ubezpieczeniowej w czasie dyskretnym"
    • 12.15-13.00 T. Komorowski "Problemy otwarte dotyczace  relacji Einsteina w ukladach bez przerwy spektralnej".
    • Druga część seminarium będzie dotyczyła nowych problemów otwartych - postawione będą dwa problemy:
    • 13.15-14.00 J. Jakubowski " Problemy związane z conditional Markov  chain,  z modelowaniem strukturalnym,
    • 14-14.45 T. Klimsiak "Problem charakteryzacji miar dobrych dla półliniowych równań cząstkowych z absorpcją”
  • 20.10.2015 - 1130
  • 11.30-12.30 prezentacja (i dystrybucja) tomu 105 (Stochastic Analysis) Banach Center Publications, 12.30-14 prof. Szymon Peszat "Problemy odwrotne dla stochastycznych równań z pochodnymi cząstkowymi"
  • 19.05.2015 - 1130

  • 11.30-13 prof. dr hab. Tomasz Byczkowski, "Funkcjonały wykładnicze ruchu Browna, procesy Bessela i funkcja Greena hiperbolicznego ruchu Browna" Streszczenie: Celem referatu jest przedstawienie głównych wyników zawartych w wspólnej z K. Bogusem i J.Małeckim pracy: "Sharp estimates of Green function of hyperbolic Brownian motion"Praca dotyczy związków hiperbolicznego ruchu Browna z procesami Bessela. Dokładniej, za pomocą reprezentacji Matsumoto-Yora rozkładu łącznego (∫0t \exp(2 Bs(-μ) ) ds; Bt(-μ) otrzymujemy wyrażenie λ funkcji Greena Gλ półprzestrzeni dla hiperbolicznego ruchu Browna, w terminach jądra ciepła odpowiedniego ruchu Bessela. Tutaj Bt(-μ) = Bt - μt jest ruchem Browna z (ujemnym) dryfem (-μ); μ>0. Następnie, korzystając z dokładnych oszacowań jądra ciepła ruchu Bessela, udowodnionych niedawno przez K. Bogusa i J. Małeckiego, otrzymujemy ostre oszacowania λfunkcji Greena Gλ. Ważnym elementem dowodu przedstawienia Gλ jest reprezentacja Lampertiego geometrycznego ruchu Browna \exp ( Bt(-μ) ) w terminach odpowiedniego procesu Bessela Rt(-μ) ze zmianą czasu. 13.15-14.45 dr Łukasz Stępień, Granice skalowania dla równania falowego na jednowymiarowej kracie z zaburzeniem Ornsteina-Uhlenbecka. Streszczenie : Opiszę jednowymiarowy stochastyczny model transportu energii w łańcuchu wzajemnie oddziałujących oscylatorów rozmieszczonych na kracie wprowadzony przez Basile et al. w [1]. Ewolucja łańcucha opisana jest liniowym układem równań hamiltonowskich z zaburzeniem na kracie wprowadzony przez Basile et al. w [1]. Ewolucja łańcucha opisana jest liniowym układem równań hamiltonowskich z zaburzeniem losowym w postaci szumu zachowującego energię i masę. W przypadku łańcucha niezwiązanego zachowany jest także pęd układu. Z tego mikroskopowego modelu wyprowadzono makroskopowe prawa transportu ciepła w postaci równania dyfuzji w przypadku łańcucha związanego i superdyfuzji ze współczynnikiem α=3/2 dla łańcucha niezwiązanego. Omówię wyniki badań prowadzonych wspólnie z prof. T. Komorowskim nad granicą kinetyczną dla modyfikacji wspomnianego modelu polegającej na zastąpieniu szumu przez stacjonarny proces Ornsteina-Uhlembecka. Granica kinetyczna jest etapem pośrednim w przejściu od skali mikro- do makroskopowej. W tej skali uzyskuje się liniowe równanie Boltzmanna, będące równaniem prospektywnym dla procesu Markowa, który można interpretować jako opis gazu fononów - quasi-cząstek propagujących się w ośrodku i wymieniających energię w wyniku losowych zderzeń. [1] G. Basile, C. Bernardin, S. Olla, Momentum conserving model with anomalous thermal conductivity in low dimension, Physical Review Letters 96, 204303, (2006)
  • 14.04.2015 - 1130

  • 11.30-13.00 Tomasz Szarek (UG), Iterated function systems on circle, Abstract: My talk will be about iterated function systems on circle. We prove that all iterated functions systems consisting of orientation-preserving circle homeomorphisms such that at least one of them has a dense orbit have a unique invariant measure. Then the strong Law of Large Numbers holds also. We will formulate sufficient conditions for stability. This is a joint paper with A. Zdunik. 13.15-14.45 Tomasz Grzywny (PWr), Prawdopodobieństwo przeżycia unimodalnych procesów Levy'ego Streszczenie: Referat będzie głównie dotyczył niezmienniczych na obroty unimodalnych procesów Levy'ego tzn procesów dla których miara Levy'ego jest absolutnie ciągła a jej gęstość jest izotropowa i radialnie nierosnąca. W trakcie referatu zostaną przedstawione ostre oszacowania na prawdopodobieństwa przeżycia procesu w zbiorach o gładkim brzegu dla dowolnego punktu startu. Typowymi przykładami takich zbiorów są kule, dopełnienia kul oraz półprzestrzeń. Ponadto zostaną przedstawione zastosowania tych wyników do oszacowań gęstości prawdopodobieństwa przejścia procesów zabitych po wyjściu z rozważanego zbioru. Referat będzie oparty na rezultatach otrzymanych wspólnie z prof. K. Bogdanem oraz prof. M. Ryznarem.
  • 13.01.2015
 - 1130
     
    11.30-13.00 Krzysztof Bartoszek, Asymptotyczne własności kwadratowych operatorów stochastycznych działających na L1xL1 (na podstawie wspólnej pracy z dr Małgorzatą Pułką)

 Abstrakt: Kwadratowe operatory stochastyczne wykazują dużą różnorodność asymptotycznych zachowań. Nie dawno zostały
 one wprowadzone i zbadane dla operatorów działających na l1xl1. Okazuje się, że większość tych zachowań można przenieść na L1xL1. Jednakże w związku z własnościami topologicznymi tej przestrzeni część własności można wykazać tylko dla operatorów jądrowych. Opiszemy jednostajną oraz mocną zbieżność operatorów działających na L1xL1 za pomocą zbieżności stowarzyszonych (liniowych) niejednorodnych łancuchów Markowa.

 13.15-14.45 Rafał Łochowski, Całkowanie nieregularnych ścieżek - podejście za pomocą uciętego wahania

 Abstrakt: W referacie omówię potencjalne związki między uciętym wahaniem a teorią nieregularnych ścieżek
 oraz bardziej szczegółowo przedstawię związki między uciętym wahaniem a teorią Younga całkowania umiarkowanie nieregularnych ścieżek. Używając technik opartych na uciętym wahaniu, udowodnię wzmocnienie klasycznej nierówności Loeve-Younga, gwarantującej istnienie całki Riemanna-Stieltjesa gdy funkcje - całkująca i całkowana mają nieskończone wahanie całkowite, ale są wystarczająco regularne, tak, że mają skończone q i p-wahanie odpowienio, gdzie p>1, q>1 oraz 1/p1/q>1. Następnie przedstawię wariant tej nierówności, gdzie norma p-wahania jest zastąpiona przez pewną inną normę, związaną z asymptotyką uciętego wahania gdy poziom odcięcia dąży do 0. Na koniec udowodnię, że wspomniana norma dla typowej ścieżki ruchu Browna lub ogólniej- dowolnego ciągłego semimartyngału jest skończona, podczas gdy odpowiadająca jej norma 2-wahania jest nieskończona.

  • 


  • 18.11.2014

     
    11.30-13.00 Tomasz Klimsiak (IMPAN i UMK), Podwójnie stochastyczne równania różniczkowe wstecz i ich zastosowania do SPDE

 Abstrakt: Podczas wykładu przedstawię wyniki wspólnej pracy z prof. A. Rozkoszem
 na temat istnienia i regularności rozwiązań półliniowych stochastycznych parabolicznych równań różniczkowych cząstkowych z zależnym od czasu operatorem typu Dirichleta i absorpcją spełniającą słaby warunek wzrostu.
 Przedstawię nowe podejście do problemu, które polega na wykorzystaniu podwójnie stochastycznych równań różniczkowych wstecz oraz probabilistycznej teorii potencjału.

 13.15-14.45 Elina Kalpinelli (Athens University of Economics and Business), Wiener Chaos expansion and numerical solutions of the HJM interest rate model.

 Abstract: In this work we construct generalized weighted Wiener chaos solutions for hyperbolic linear SPDEs driven by a cylindrical Brownian Motion. Explicit conditions for the existence, uniqueness and regularity of generalized (Wiener
 Chaos) solutions are established in Sobolev spaces. An equivalence relation between the Wiener Chaos solution and the traditional one is established. Based on the Wiener Chaos expansion (WCE), we propose a fast and efficient numerical scheme for solving hyperbolic SPDEs. To illustrate the general construction, we use the WCE to approximate the value of the US
 Treasury bond in a HJM framework and the results are compared to those derived by the Monte Carlo method and the Kalman filter.

  • 


  • 21.10.2014
 - 1130
    Krzysztof Bogdan (PWr), Mariusz Niewęgłowski (PW)
    11.30-13.00 Krzysztof Bogdan, Politechnika Wrocławska
 “Systemy Lévy'ego”
 Abstrakt: Przedstawię wyniki wspólnej pracy z Lukaszem Wojciechowskim na temat
 tzw. wielokrotnych mieszanych systemów Lévy'ego i ich związków z
 wzorem Mecke-Palma.

 13.15-14.45 Mariusz Niewęgłowski, Politechnika Warszawska
 “Problemy zgodności dla warunkowych łańcuchów Markowa”
 Abstrakt. W swoim wystapieniu omówię problem markowskich zgodności oraz związane z nim problemy konstrukcji "Markowskich kopuł" dla warunkowych łańcuchów Markowa. W kontekscie procesów Markowa markowska zgodność związana jest własnością Markowa (w odpowiedniej filtracjach) współrzędnych wielowymiarowego procesu Markowa. Zbadanie warunkow wystarczajacych i koniecznych na Markowska zgodność jest przydatne przy konstrukcji wielowymiarowych procesów Markowa których wspołrzędne są procesami Markowa o zadanych rozkladach. Badania nad Markowskimi zgodnościami prowadzą więc do wprowadzenia pojecia "Markowskiej kopuły" dla procesów Markowa. W moim referacie przedstawie wyniki naszych najnowszych badań dotyczące ugólnienia naszych wyników na warunkowe łańcuchy Markowa.

  • 


  • 17.06.2014
 - 1215
    Dariusz Gątarek (HVB - UniCredit)
    
 1. Matematyka finansowa, inżynieria finansowa, quantitative finance; związek z matematyką, rola matematyki w dyscyplinie, i kilka luźnych myśli praktyka i teoretyka zarazem.
 2. Zależne momenty Markowa.
 W trakcie referatu będzie tez omawiana praca D. Gatarek , J. Jablecki Systematic risk factors redefined, Risk 26, 66–70, listopad 2013.
  • 


  • 8.04.2014
 - 1130
     
    11.30-13 prof. A. Swiech (Georgia Institute of Technology), "Viscosity solutions of Hamilton-Jacobi equations in metric spaces"


 13.15-14.45 dr Tomasz Klimsiak (UMK), „Probabilistyczne rozwiązania równań różniczkowych cząstkowych i ich zastosowania”.

  • 


  • 18.03.2014
 - 1130
     
    11.30-13.00 dr Kamil Kaleta (PWr), "Punktowe oszacowania funkcji własnych nielokalnych operatorów Schrödingera"
 Streszczenie: Omówię pewną metodę otrzymywania dokładnych oszacowań (zaniku w nieskończoności) funkcji własnych
 półgrup Feynmana–Kaca dla szerokiej klasy symetrycznych procesów Lévy'ego i potencjałów, która oparta
 jest na pewnym warunku splotowym dla miar Lévy'ego. Rozważana klasa procesów zawiera te
 o wykładniczo i podwykładniczo zanikających intensywnościach skoków, w tym relatywistyczne procesy stabilne.
 W miarę możliwości omówię też pewne zastosowania uzyskanych oszacowań.
 Referat będzie dotyczył wyników zawartych we wspólnej pracy z J. Lőrinczi
 "Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties
 of Feynman-Kac semigroups for a class of Levy processes"
 (przyjętej do druku w Annals of Probability, arXiv:1209.4220).

 13.15-14.45 dr Jacek Małecki (PWr) "Suprema procesów Levy'ego - wzory, oszacowania i asymptotyka",

  • 


  • 21.01.2014
 - 1130
     
    11.30-13.00 Jerzy Zabczyk (tytuł będzie podany później)
 13.15-14.45 Szymon Peszat, Równanie ciepła z białym szumem na brzegu
  • 


  • 10.12.2013

     
    11.30-13.00 Tomasz Komorowski, Aproksymacja dyfuzyjna dla rozwiazań równania Schrodingera z losowym potencjałem.

 Streszczenie:

 W pierwszej części mojego wystąpienia omówię wynik mówiący o tym, iż transformata Wignera rozwiązania równania Schrodingeraw color="teal">Rd, gdzie color="teal">d≥2 z losowym potencjałem, przy przejściu granicznym w reżimie ”weak coupling”, zbiega do rozwiązania liniowego równania Boltzmanna. Mezoskopowa granica rozwiązań tego równania opisana jest przez równanie Kołmogorowa odpowiadające ruchowi Browna na color="teal">d-1 wymiarowej sferze. W przypadku makroskopowej granicy rozwiązań liniowego równania Boltzmanna z izotropowymi danymi początkowymi otrzymujemy równanie Kołmogorowa dla dyfuzji będącej pierwiastkiem kwadratowym color="teal">d/2 wymiarowego procesu Bessela.

 13.15-14.45 John Noble, Time Homogeneous Diffusions with a Given Marginal at a Deterministic Time

 Abstract: I talk about the article recently published in Stochastic Processes and Applications vol. 123 (2013) no. 3 pp 675 - 718, where I show that for any probability law  over color="teal">R with finite first moment and a given deterministic time color="teal">t > 0, there exists a gap diffusion with the prescribed law at time color="teal">t. The method starts by constructing a discrete time process color="teal">X on a finite state space, where color="teal">X has the prescribed law when stopped at a geometric time  color="teal">τ, independent of the diffusion. This argument is developed, using a fixed point theorem, to give conditions for existence of a process with the prescribed law when stopped at an independent time with negative binomial distribution. Reducing the time mesh to zero gives a continuous time diffusion with the prescribed law for when stopped at an independent time with a Gamma distribution. Keeping color="teal">E[τ ] = t fixed, the parameters of the Gamma distribution are altered, giving the prescribed law for the process stopped at time color="teal">t.

  • 


  • 19.11.2013
 - 1130
     
    11.30-13.00 Ewelina Seroka (UKSW), Stabilność i stabilizowalność stochastycznych układów hybrydowych

 Abstrakt wystapienia:

 W referacie przedstawiony zostanie problem asymptotycznej stabilności i stabilizowalności według prawdopodobieństwa oraz eksponencjalnej p – średniej stabilności i stabilizowalności rozwiązania zerowego stochastycznego układu hybrydowego. Układy hybrydowe to układy dynamiczne, które wykazują zarówno ciągłe jak i dyskretne własności dynamiczne. Stan dyskretny opisany jest przedziałami stałą funkcją czasu typu càdlàg lub przedziałami stałym procesem stochastycznym, którego realizacje są typu càdlàg (tzw. reguła przełączania), zaś stan ciągły opisany jest deterministycznymi lub stochastycznymi równaniami różniczkowymi. W celu sformułowania warunków wystarczających stabilności i stabilizowalności rozwiązania zerowego rozważanych klas układów hybrydowych posłużymy się techniką funkcji Lapunowa. W analizie stabilności rozwiązania układów hybrydowych rozpatruje się między innymi wspólne i pojedyncze funkcje Lapunowa oraz pojedyncze quasi – funkcje Lapunowa. W przypadku, gdy dla układu hybrydowego istnieje wspólna funkcja Lapunowa, rozwiązanie zerowe deterministycznego układu hybrydowego jest asymptotycznie stabilne, zaś stochastycznego układu hybrydowego jest asymptotycznie stabilne według prawdopodobieństwa przy dowolnym przełączaniu. W przeciwnym przypadku stabilność rozwiązania zerowego układu hybrydowego zależy od reguły przełączania, i stąd rozwiązanie zerowe układu hybrydowego nie jest stabilne (w odpowiednim sensie) dla dowolnego przełączania, ale tylko dla tzw. stabilizujących reguł przełączania. Podane zostaną również przykłady numeryczne ilustrujące praktyczne wykorzystanie zaproponowanej teorii.

 13.15-14.45 Lukasz Stettner, O markowskich grach stochastycznych a asymetryczna informacja

 Abstrakt wystapienia:

 Przedmiotem wystapienia jest gra stochastyczna w ktorej jeden gracz ma pelna informacje, a drugi jedynie czesciowa. Beda pokazane rownania na dolna i gorna wartosc gry i na optymalne strategie odpowiadajace tym wartosciom. Przyklad pokazujacy , ze w takim przypadku moze nie istniec wartosc gry bedzie rowniez pokazany. Wyniki opieraja sie na pracy z Arnabem Basu z Indian Institute of Management Bangalore.

  • 


  • 15.10.2013
 - 1130
    11.30-13.00 prof. Tomasz Byczkowski, 13.15-14.45 dr Jan Palczewski
    11.30-13.00 prof. Tomasz Byczkowski
 Jądro Poissona i funkcja Greena półprzestrzeni i kul dla hiperbolicznego ruchu Browna
 (Poisson kernel and Green function for half-spaces and balls for hyperbolic Brownian motion)
 Streszczenie: W referacie przedstawiony zostanie przegląd wyników dotyczących pewnych aspektów teorii potencjału ruchu Browna na przestrzeniach hiperbolicznych, uzyskanych w ostatnich latach. Przedstawione zostaną jawne wzory na jądro Poissona i funkcję Greena półprzestrzeni i kul dla hiperbolicznego ruchu Browna na H^n, D^n i C^n oraz związki z reprezentacją czasów trafienia dla ruchu Bessela.
 13.15-14.45 dr Jan Palczewski, "Estimation of parameters for Markov Switching Diffusion Models"
 Abstract:
 I will present results of (almost finished) paper with Krzysztof Latuszynski and Gareth Roberts. The problem is of Bayesian inference for diffusions whose coefficients depend on a non-observable finite state Markov process. We are interested in estimating parameters governing the coefficients of the diffusion as well as the transition matrix of the hidden process.
 I will show how to generate paths of diffusions without discretisation errors inflicted by numerical schemes such as Euler or Milstein - this is a beautiful blend of stochastic analysis and intricate properties of the Brownian motion. It will be followed by a discussion of difficulties with statistical inference for discretely sampled diffusions. I will conclude with a sketch of a Monte Carlo Markov Chain algorithm for the inference problem of Markov switching diffusions.

  • 


  • 30.04.2013

    Szymon Peszat (IMPAN i AGH)
    Rough Path Theory - wprowadzenie, kontynuacja
  • 


  • 23.04.2013

    prof. Tomasz Komorowski (IMPAN)
    Rough path theory - kontynuacja
  • 


  • 16.04.2013

    prof. Tomasz Komorowski (IMPAN)
    kontynuacja cyklu o "Rough path theory"
  • 


  • 9.04.2013
 - 1215
    prof. Szymon Peszat (IMPAN i AGH)
    "Wprowadzenie do rough path theory - rozwiązywanie równań różniczkowych w klasie funkcji o skończonym p wahaniu".
  • 


  • 26.03.2013
 - 1215
    Tomasz Rogala (IMPAN)
    Ciągłość całki i rozwiązań równań różniczkowych po trajektorii ze skończonym p - wahaniem
  • 


  • 19.03.2013
 - 1215
    Łukasz Stettner (IMPAN), Tomasz Rogala (IMPAN)
    Wprowadzenie do rough path theory wg. A. Lejay (Sem. Prob. 37 (2003))
  • 


  • 12.03.2013
 - 1215
    Łukasz Stettner (IMPAN)
    Całkowanie formy różniczkowej względem nieregularnej ścieżki i definicja seminormy p-wariacyjnej wg pracy A. Lejay, An Introduction to Rough Paths, Sem. Prob. XXXVII (2003).


  • 


  • 5.03.2013
 - 1215
    Ben Gołdys (University of Sydney)
    "Charakteryzacje procesów Gaussa-Markowa w przestrzeniach Hilberta"

 ABSTRAKT:
 Przedstawimy charakteryzacje jednorodnych w czasie procesow Gaussa-Markowa przyjmujach wartosci w przestrzeni Hilberta. Pokazemy, ze przy pewnych slabych zalozeniach procesy takie musza byc rozwiazaniami liniowych stochastycznych rownan ewolucji (o byc moze singularnych wspolczynnikach). Wyklad oparty jest na wspolnej pracy z Szymonem Peszatem i Jerzym Zabczykiem.

  • 


  • 15.01.2013

     
    11.30-13.00 Anna Talarczyk (UW) "Asymptotyka drugiego rzędu procesu liczby bloków procesu Lambda-koalescencji"
 Abstrakt:
 Procesy koalescencji są procesami Markowa o wartościach w zbiorze podziałów zbioru przeliczalnego. Z upływem czasu bloki się sklejają. Procesy takie pojawiają się np. w kontekście modelowania genealogii populacji. Klasycznym przykładem jest koalescencja Kingmana, w której każda para bloków skleja się z intensywnością 1. Procesy Lambda-koalescencji stanowią ogólniejszą klasę, która dopuszcza jednoczesne sklejanie wielu bloków. Procesy te opisuje się przez pewną miarę Lambda na odcinku [0,1], zadającą mechanizm sklejania. W referacie będziemy rozważać procesy Lambda-koalescencji startujące z przeliczalnej liczby bloków. Niech N_t oznacza liczbę bloków w chwili t. Znany jest warunek konieczny i dostateczny jaki musi spełniać miara Lambda, aby dla każdego t>0 N_t było skończone p.n., ponadto znana jest też prędkość schodzenia z nieskończoności, tj. taka deterministyczna funkcja v, że N_s/v_s zbiega do 1 przy s dążącym do 0. W referacie opiszemy asymptotykę drugiego rzędu procesu liczby bloków Lambda-koalescencji bez części kingmanowskiej. Dokładniej, zbadamy zachowanie procesów (N_\epsilon t/v_\epsilon t - 1), t\ge 0, gdy \epsilon zbiega do 0. Pokażemy, że przy dodatkowym założeniu regularności miary Lambda i po odpowiednim unormowaniu zależnym od \epsilon procesy te zbiegają wg. rozkładu w przestrzeni Skorochoda do pewnego procesu stabilnego. Proces graniczny spełnia równanie typu Ornsteina-Uhlenbecka z szumem Levy'ego.
 13.15-14.45 Jacek Jakubowski (UW) "O hiperbolicznym procesie Bessela"
  • 


  • 4.12.2012

     
    Otwarte problemy: 11.30-13 prof. Tomasz Komorowski i 13.15-14.45 prof. Łukasz Stettner "Problemy sterowania ułamkowym ruchem Browna"
  • 


  • 13.11.2012

     
    Prezentacja otwartych problemów przez prof. T. Komorowskiego, Sz. Peszata, Ł. Stettnera i J. Zabczyka
  • 


  • 9.10.2012

     
    11.30 - 13.00 dr Piotr Zebrowski (IMPAN i UWr)

 "Twierdzenia graniczne dla powiązanych i zależnych błądzeń losowych z
 czasem ciągłym"

 13.15-14.45 mgr Małgorzata Sulkowska (PWr)

 "Optymalne oraz efektywne algorytmy zatrzymywania procesów przeszukiwania grafów skierowanych".
  • 


  • 17.01.2012

    Jerzy Zabczyk (IMPAN), Tomasz Komorowski (UMCS, IMPAN)
    11.30-13 prof. Jerzy Zabczyk, O rownaniu Musieli z szumem Levy'ego,

 Abstrakt: Rownanie Musieli jest stochastycznym rownaniem opisujacym ewolucje "przewidywanych stop procentowych". Referat poswiecony bedzie przypadkowi, gdy procesem zaburzajacym jest jednowymiarowy proces Levy'ego. Podane beda warunki na istnienie nieujemnych rozwiazan lokalnych i globalnych w dwu przypadkach, gdy operator dyfuzji jest typu Niemytzkiego i gdy jest liniowy. Prezentowane wyniki pochodza z przygotowanej wspolnie z M. Barskim pracy "Heath-Jarrow-Morton-Musiela equation with Levy perturbation".

 13.15-14.45 prof. Tomasz Komorowski, Asymptotyka nieskonczonego ukladu oscylatorow na kracie jednowymiarowej,

 Abstrakt: W swoim wystapieniu omowie klasyczny model rozchodzenia sie ciepla na precie jednowymiarowym. Gdy nie uwzgledniamy oddzialywan z zewnetrzym termostatem zadany moze on byc przez uklad nieskonczenie wielu oddzialywujacych miedzy soba oscylatorow umieszczonych w punktach kraty calkowitoliczbowej. Dynamika takiego ukladu zadana jest przez uklad nieskonczenie wielu rownan Hamiltona. Jest to klasyczny model propagacji ciepla. Podstawowym problemem zwiazanym z tym modelem jest badanie jego asymptotyki w duzych skalach czaso-przestrzennych. Uzyskanie rygorystycznych wynikow stanowi w chwili obecnej znaczne wyzwanie z punktu widzenia matematyki. Aby nieco ulatwic ten problem zaklada sie, iz oddzialywania maja charakter stochastyczny, tak wiec dynamika zadana jest rownaniem stochastycznym w pewnej przestrzeni Hilberta. Ze wzgledu na wymog by pewne wielkosci fizyczne (takie jak energia i ped) byly lokalnie zachowane, szum wystepujacy w ukladzie jest zdegenrowany. Pokazemy, iz granice skalowania transformaty Wignera rozwiazan takich rownan zbiegaja do rozwiazania rownania ciepla z ulamkowym laplasjanem (o wykladniku 3/4). Wprowadzimy takze pojecie kompensowanego rozwiazania, ktore w niektorych sytuacjach zawiera wiecej informacji o rozwiazaniu niz jego transformata Wignera. Wykazemy, iz granica kompensowanych rozwiazan opisana jest niejednorodnym w czasie rozwiazaniem rownania Ornstein-Uhlenbecka. Uzyskane wyniki stanowia efekt wspolnych badan z L. Stepniem (UMCS), S. Olla (CEREMADE, Univ. Paris-Dauphine) i L. Ryzhikiem (Stanford Univ.).

  • 


  • 6.12.2011

    B. Gołdys (School of Mathematics and Statistics The University of New South Wales, Jacek Leskow (Zakład Metod Ilościowych w Zarządzaniu, WSB-NLU Nowy Sącz)
    11.30-13.00 B. Gołdys (School of Mathematics and Statistics The University of New South Wales, Sydney) O pewnych uogólnieniach stochastycznego równania Burgersa

 ABSTRAKT: Jednowymiarowe równanie Burgersa było w ostatnich latach intensywnie badane i jest ono stosunkowo dobrze zrozumiane. Celem tego wykładu będzie przedstawienie pewnych uogólnien tego równania. Przedstawimy najpierw wyniki dotyczące wielowymiarowego równania Burgersa w przypadku gdy rozwiązanie nie jest gradientem. W drugiej części wykładu będziemy rozważać stochastyczne równanie Burgersa z ułamkowa potęgą operatora Laplaca.

 13.15-14.45 Jacek Leskow (Zakład Metod Ilościowych w Zarządzaniu, WSB-NLU Nowy Sącz) Techniki repróbkowania dla szeregów czasowych okresowo i prawie okresowo skorelowanych

 ABSTRAKT: Tematem wykladu jest zastosowanie technik repróbkowania typu bootstrap czy subsampling do wnioskowania dla szeregów czasowych okresowo i prawie okresowo skorelowanych. Technika repróbkowania polega na badaniu próbkowego rozkladu estymatora za pomocą algorytmów symulacyjnych które umożliwiają aproksymacje takiego rozkladu. Stosowanie takich algorytmów w praktyce wymaga udowodnienia ich zgodności, to znaczy zbieżności rozkladów aproksymacyjnych do rozkładów asymptotycznych badanego estymatora. W trakcie wykladu, oprócz podania ogólnych informacji dotyczących technik bootstrap, zostanie przedstawione twierdzenie o zgodności techniki subsampling dla prawie okresowo skorelowanych szeregów czasowych. Omówione zostaną też zastosowania tego rezultatu w analizie sygnałów wibromechanicznych i telekomunikacyjnych.

  • 


  • 22.11.2011

     
    11.30-13.00 Krzysztof Szajowski (PWr) - Problem rozregulowania dla wielowymiarowego procesu,
 13.15-14.45 Mateusz Kwaśnicki (IMPAN i PWr) - Suprema procesów Levy'ego (na podstawie wspólnej pracy z J. Małeckim i M. Ryznarem)

  • 


  • 11.10.2011

     
    11.30-13.00 Ł. Stettner, O metodzie kary w optymalnym stopowaniu
 13.15-14.45 K. Bogdan, Schroedingerowskie zaburzenia operatorów całkowych
  • 


  • 8.03.2011

     
    11.30-13.00 prof. dr hab. Zbigniew Jurek (UWr) - "Losowe reprezentacje całkowe ich zastosowania",

 13.15-14.45 dr Rafał Łochowski (SGH) - "Ucięte wahanie procesu stochastycznego o trajektoriach cadlag: skończoność, problem istnienia eksponencjalnych momentów, optymalność, prawa wielkich liczb i twierdzenia graniczne."

  • 


  • 18.01.2011

     
    11.30-13.00 B. Gołdys, Wielkie odchylenia dla równania Landaua Lifschitza,
 13.15-15.45 Sz. Peszat, Ergodyczność stochastycznego równania Naviera Stokesa
  • 


  • 11.01.2011

     
    11.30-13.00 J. Zabczyk: "On invariant measures for SPDEs with stable noise"

 Abstract. Recent results on the rate of convergence of transition
 functions to the invariant measure for spdes with stable noise are
 presented. The gradient estimates and the coupling method are used. The
 results were obtained in collaboration by Lihu Xu, Enrico Priola, Armen
 Shirikyan and J. Zabczyk and can be found on ArXiv.

 13.15-14.45 W. Grygierzec: "Jednoznaczność rozwiazania lepkosciowego równania Hamiltona-Bellmana-Jacobiego dla sterowania optymalnego stochastycznego równania dyfuzji."


  • 


  • 7.12.2010
 -


     
    
 Tadeusz Kulczycki (IMPAN Wrocław): Operatory Schrödingera oparte na ułamkowym Laplasjanie;
 Mateusz Kwaśnicki (IMPAN Wrocław): Suprema pewnych symetrycznych procesów Lévy'ego
  • 


  • 16.11.2010

     
    11.30-13.00 Szymon Peszat, pt. "Operator drugiej kwantyzacji na przestrzeni Levy'ego-Focka i wlasności półgrupy przejścia procesu Levy'ego-Ornsteina-Uhlenbecka"
 13.15-14.45 Tomasz Komorowski, pt. "Asymptotyka rozwiązań równań różnicowych z losowymi współczynnikami. Streszczenie: W swoim wystapieniu podam oszacowania rozwiazan rownania rezolwenty generatora symetrycznego bladzenia przypadkowego na kracie losowej otrzymane ostatnio w pracy Gloria i Otto [1] dla wymiarow kraty color="teal">d≥2. Omówię także otrzymaną przeze mnie i L. Ryzhika dokładną asymptotykę tych rozwiązań w przypadku wymiaru color="teal">d=1.[1] Gloria, Antoine, Otto, Felix, \em An optimal error estimate in stochastic homogenization of discrete elliptic equations (2010) to appear in \em The Annals of Probability, available at \tt http:/hal.archives-ouvertes.fr/docs/00/45/70/20/PDF/Gloria-Otto-2.pdf

  • 


  • 26.10.2010

     
    Ł. Stettner, Nowe fakty z ergodycznych własności procesów filtracji,
 P. Hitczenko, O ogonach perpetuit losowych
  • 


  • 26.10.2010

    Łukasz Stettner (IMPAN)
    Nowe fakty z ergodycznych własności procesów filtracji
    Paweł Hitczenko (IMPAN)
    O ogonach perpetuit losowych
  • 


  • 30.03.2010

    prof. Jolanta Misiewicz (PW)
    Procesy o uogólnionych przyrostach niezależnych.
  • 


  • 23.03.2010

    Jacek Jakubowski (MIM UW i PW)
    O rozwiązaniach SDE z szumem Levy'ego w losowym ośrodku
  • 


  • 26.01.2010

    Beniamin Gołdys (Univ. New South Wales, Sydney)
    Stochastyczne równanie Landaua - Lipschitza
  • 


  • 19.01.2010

    Mateusz Kwaśnicki (Politechnika Wrocławska)
    Funkcje własne półgrup pewnych procesów Lévy'ego na półprostej

  • 


  • 19.01.2010

    Mateusz Kwasnicki (Politechnika Wroclawska)
    "Funkcje własne półgrup pewnych procesów Lévy'ego na półprostej". Streszczenie:

 Procesy Levy'ego (czy szerzej procesy Markowa) zabite w chwili wyjścia ze zbioru otwartego mają związek z wieloma klasycznymi zagadnieniami analizy i od dawna są tematem badań. W ostatnich latach ukazało się wiele prac poświęconych oszacowaniom gęstości prawdopodobieństwa przejścia takich procesów. Innym badanym obiektem są wartości własne i funkcje własne operatorów przejścia takich procesów. W niedawnym artykule dr Kwasnicki z T. Kulczyckim, J. Małeckim i A. Stósem w tym kontekście rozważal tzw. jednowymiarowy proces Cauchy'ego (symetryczny proces 1-stabilny).
 Wyniki tej pracy zawierają jawny wzór na prawdopodobieństwo przejścia procesu na półprostej oraz dwuczłonowe rozwinięcie asymptotyczne wartości własnych procesu na odcinku. Aby otrzymać te rezultaty, wyprowadza się jawny wzór na funkcje własne półgrupy procesu na półprostej. Przedstawiona bedzie metoda uzyskania wzoru na funkcje własne operatorów przejścia procesu na półprostej w ogólniejszym kontekście, gdy rozważany proces jest subordynowanym ruchem Browna. Wyprowadzenie polega na zastosowaniu tzw. metody Wienera-Hopfa dla operatorów związanych z procesem. Warto podkreślić, że metoda Wienera-Hopfa zastosowana do innych
 operatorów leży u podstaw teorii fluktuacji procesów Levy'ego. Oba wspomniane zastosowania tej metody wydają się jednak niezależne od siebie.


  • 


  • 12.01.2010

    Katarzyna Pietruska -Pałuba (UW)
    "Nierownosci typu Hardy'ego dla miar Gaussowskich w R^n"
  • 


  • 8.12.2009
 - 1215
    Tomasz Komorowski (UMCS i IMPAN)
    Twierdzenia graniczne dla addytywnych funkcjonałów od procesu Markowa.

 Streszczenie: W moim wystąpieniu omówię graniczne zachowanie funkcjonałów postaci color="teal">Y(t):=∫0t V(Ks)ds, gdzie color="teal">(Kt) jest danym procesem Markowa. W pierwszej częsci omówię sytuację gdy proces posiada probabilistyczną miarę niezmienniczą, zaś rozkład obserwabli color="teal">V należy do obszaru przyciągania pewnego rozkładu stabilnego indeksu color="teal">α. Przy odpowiednich założeniach dotyczących procesu color="teal">(Kt) pokażemy, iż granicą color="teal">N-1/αY(Nt) w sensie rozkładu, przy color="teal">N→∞, jest proces color="teal">α-stabilny. Drugą część wystąpienia poświęcę omówieniu zagadnienia istnienia granicy w przypadku gdy miara niezmiennicza dla color="teal">(Kt) jest nieskończona. Granica odpowiedno skalowanego procesu color="teal">(Y(t)) jest w tym przypadku samopodobnym procesem niemarkowowskim. Podam zastosowania uzyskanych rezultatów w teorii przewodnictwa cieplnego i mechanice kwantowej. Omówione rezultaty otrzymane zostały we współpracy z M. Jara i S. Olla z Universite Paris-Dauphine.
  • 


  • 24.11.2009
 - 1215
    Tadeusz Kulczycki (IMPAN i PWr.)
    Spektralne własności procesu Cauchy'ego
    Abstract 


  • 10.11.2009
 - 1215
    Jerzy Zabczyk (IMPAN)
    O aproksymacjach rozwiązań stochastycznych równań ewolucyjnych
  • 20.10.2009
 - 1215
    Szymon Peszat (IMPAN Kraków)
    Regularność rozwiązań liniowych ewolucyjnych równań stochastycznych z szumem Levy'ego
  • 6.10.2009

    Łukasz Stettner (IMPAN)
    Asymptotyka oczekiwanej wartości funkcji użyteczności
  • 9.06.2009
 - 1215
    David Elworthy (University of Warwick)
    Generalised Leray-Schauder degree theory and stochastic analysis
  • 2.06.2009
 - 1215
    Stefano Olla (CEREMADE)
    Macroscopic non-equilibrium evolution of a system of anharmonic oscilators (I)
  • 26.05.2009

    Łukasz Stettner
    Miary niezmiennicze dla procesu filtracji - praca R. van Handela - poprawienie luki z pracy H. Kunity
  • 19.05.2009
 - 1215
    Michał Baran
    Równania HJM ze skokami (dokończenie)
    Ł. Stettner
    Miary niezmiennicze dla procesu filtracji - praca R. van Handela

  • 12.05.2009
 - 1215
    Michał Baran (UKSW)
    Rozwiązania równania HJM ze skokami
  • 27.01.2009

    Anna Talarczyk
    O metodzie czasoprzestrzeni do badania zbieżności rozkładów procesów o wartościach w color="teal">S'(Rd)
  • 20.01.2009

    Tomasz Jakubowski
    Perturbacje ułamkowego Laplasjanu
  • 16.12.2008

    Jerzy Zabczyk (IMPAN)
    Własności strukturalne rozwiązań równań ewolucyjnych z szumem Levy'ego - c.d.
    Abstract 


  • 9.12.2008

    J. Jakubowski, M. Niewęgłowski
    Rynek z cenami generowanymi przez szumy Levy'ego i migracja ratingów
    Abstract 


  • 2.12.2008

    Jerzy Zabczyk (IMPAN)
    Własności strukturalne rozwiązań równań ewolucyjnych z szumem Levy'ego
  • 18.11.2008

    Krzysztof Szajowski (IMiI PWr.)
    Optymalne zatrzymywanie wektorowego procesu ryzyka
  • 28.10.2008

    H. Kunita
    Malliavin calculus on Wiener-Poisson space

  • 21.10.2008

    K. Pietruska-Pałuba (IMPAN)
    Procesy stabilne na fraktalach a ruch Browna

  • 7.10.2008

    P. Imkeller (Humboldt-Universität zu Berlin)
    Low-dimensional climate models with Levy noise

Seminaria w roku akademickim 2006/2007

  • 29.04.2008

    Szymon Peszat (IMPAN Kraków)
    Prawo wielkich liczb dla modelu pasywnego znacznika (dokończenie)
 - wg wspólnej pracy z T. Komorowskim i T. Szarkiem


  • 22.04.2008

    Szymon Peszat (IMPAN Kraków)
    Prawo wielkich liczb dla modelu pasywnego znacznika wg wspólnej pracy z T. Komorowskim i T. Szarkiem

 


  • 26.02.2008

    Adam Jakubowski (UMK Toruń)
    Moje przygody z kryterium ciasności Aldousa
  • 29.01.2008

    B. Gołdys
    Modele rynków finansowych z losową zmiennością
  • 22.01.2008

    D. Applebaum
    L(2)-properties of Hunt semigroups on Lie groups
  • 15.01.2008

    A. Talarczyk
    Fluktuacje czasu przebywania gałązkowych układów cząstek
  • 18.12.2007
 - 1215
    Michał Baran
    Zupełność rynków obligacji z szumem Levy'ego - c.d.

  • 11.12.2007
 - 1030
    A. Święch
    Wstęp do teorii rozwiązań lepkich (viscosity solutions)

  • 4.12.2007
 - 1215
    Michał Baran
    Zupełność rynków obligacji z szumem Levy'ego

  • 27.11.2007

    Mariusz Niewęgłowski (PW, Wydz. MiNI)
    Wyznaczanie rozkładów czasów absorpcji z zastosowaniami do finansów
  • 13.11.2007
 - 1215
    Piotr Miłoś (IMPAN)
    Stochastyczne równania z szumem Levy'ego w teorii nieskończonych układów cząstek (dokończenie)

    Mariusz Niewęgłowski (PW)
    Wyznaczanie rozkładów czasów absorpcji z zastosowaniami do finansów


Rewrite code from the image

Reload image

Reload image